![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uzssz | Unicode version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 11113 | . . . . 5 | |
2 | 1 | ffvelrni 6030 | . . . 4 |
3 | 2 | elpwid 4022 | . . 3 |
4 | 1 | fdmi 5741 | . . 3 |
5 | 3, 4 | eleq2s 2565 | . 2 |
6 | ndmfv 5895 | . . 3 | |
7 | 0ss 3814 | . . 3 | |
8 | 6, 7 | syl6eqss 3553 | . 2 |
9 | 5, 8 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 e. wcel 1818
C_ wss 3475 c0 3784 ~P cpw 4012 dom cdm 5004
` cfv 5593 cz 10889 cuz 11110 |
This theorem is referenced by: uzwo 11173 uzwoOLD 11174 uzwo2 11175 uzinfmi 11190 infmssuzle 11193 infmssuzcl 11194 uzsupss 11203 uzwo3 11206 fzof 11826 uzsup 11990 cau3 13188 caubnd 13191 limsupgre 13304 rlimclim 13369 climz 13372 climaddc1 13457 climmulc2 13459 climsubc1 13460 climsubc2 13461 climlec2 13481 isercolllem1 13487 isercolllem2 13488 isercoll 13490 caurcvg 13499 caucvg 13501 iseraltlem1 13504 iseraltlem2 13505 iseraltlem3 13506 summolem2a 13537 summolem2 13538 zsum 13540 fsumcvg3 13551 climfsum 13634 clim2prod 13697 ntrivcvg 13706 ntrivcvgfvn0 13708 ntrivcvgtail 13709 ntrivcvgmullem 13710 ntrivcvgmul 13711 prodrblem 13736 prodmolem2a 13741 prodmolem2 13742 zprod 13744 4sqlem11 14473 gsumval3OLD 16908 gsumval3 16911 lmbrf 19761 lmres 19801 uzrest 20398 uzfbas 20399 lmflf 20506 lmmbrf 21701 iscau4 21718 iscauf 21719 caucfil 21722 lmclimf 21742 mbfsup 22071 mbflimsup 22073 ig1pdvds 22577 ulmval 22775 ulmpm 22778 2sqlem6 23644 ballotlemfc0 28431 ballotlemfcc 28432 ballotlemiex 28440 ballotlemsdom 28450 ballotlemsima 28454 ballotlemrv2 28460 erdszelem4 28638 erdszelem8 28642 divcnvshft 29117 caures 30253 diophin 30706 irrapxlem1 30758 monotuz 30877 hashnzfzclim 31227 uzmptshftfval 31251 ioodvbdlimc1lem2 31729 ioodvbdlimc2lem 31731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-neg 9831 df-z 10890 df-uz 11111 |
Copyright terms: Public domain | W3C validator |