![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > uzsupss | Unicode version |
Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.) |
Ref | Expression |
---|---|
uzsupss.1 |
Ref | Expression |
---|---|
uzsupss |
M
, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 999 | . . . . 5 | |
2 | uzid 11124 | . . . . 5 | |
3 | 1, 2 | syl 16 | . . . 4 |
4 | uzsupss.1 | . . . 4 | |
5 | 3, 4 | syl6eleqr 2556 | . . 3 |
6 | ral0 3934 | . . . 4 | |
7 | simpr 461 | . . . . 5 | |
8 | 7 | raleqdv 3060 | . . . 4 |
9 | 6, 8 | mpbiri 233 | . . 3 |
10 | eluzle 11122 | . . . . . . . 8 | |
11 | eluzel2 11115 | . . . . . . . . 9 | |
12 | eluzelz 11119 | . . . . . . . . 9 | |
13 | zre 10893 | . . . . . . . . . 10 | |
14 | zre 10893 | . . . . . . . . . 10 | |
15 | lenlt 9684 | . . . . . . . . . 10 | |
16 | 13, 14, 15 | syl2an 477 | . . . . . . . . 9 |
17 | 11, 12, 16 | syl2anc 661 | . . . . . . . 8 |
18 | 10, 17 | mpbid 210 | . . . . . . 7 |
19 | 18, 4 | eleq2s 2565 | . . . . . 6 |
20 | 19 | pm2.21d 106 | . . . . 5 |
21 | 20 | rgen 2817 | . . . 4 |
22 | 21 | a1i 11 | . . 3 |
23 | breq1 4455 | . . . . . . 7 | |
24 | 23 | notbid 294 | . . . . . 6 |
25 | 24 | ralbidv 2896 | . . . . 5 |
26 | breq2 4456 | . . . . . . 7 | |
27 | 26 | imbi1d 317 | . . . . . 6 |
28 | 27 | ralbidv 2896 | . . . . 5 |
29 | 25, 28 | anbi12d 710 | . . . 4 |
30 | 29 | rspcev 3210 | . . 3 |
31 | 5, 9, 22, 30 | syl12anc 1226 | . 2 |
32 | simpl2 1000 | . . 3 | |
33 | uzssz 11129 | . . . . . 6 | |
34 | 4, 33 | eqsstri 3533 | . . . . 5 |
35 | 32, 34 | syl6ss 3515 | . . . 4 |
36 | simpr 461 | . . . 4 | |
37 | simpl3 1001 | . . . 4 | |
38 | zsupss 11200 | . . . 4 | |
39 | 35, 36, 37, 38 | syl3anc 1228 | . . 3 |
40 | ssrexv 3564 | . . 3 | |
41 | 32, 39, 40 | sylc 60 | . 2 |
42 | 31, 41 | pm2.61dane 2775 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 C_ wss 3475
c0 3784 class class class wbr 4452
` cfv 5593 cr 9512 clt 9649 cle 9650 cz 10889 cuz 11110 |
This theorem is referenced by: dgrcl 22630 dgrub 22631 dgrlb 22633 oddpwdc 28293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 |
Copyright terms: Public domain | W3C validator |