MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem3 Unicode version

Theorem vdwlem3 14501
Description: Lemma for vdw 14512. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v
vdwlem3.w
vdwlem3.a
vdwlem3.b
Assertion
Ref Expression
vdwlem3

Proof of Theorem vdwlem3
StepHypRef Expression
1 vdwlem3.b . . . . . 6
2 elfznn 11743 . . . . . 6
31, 2syl 16 . . . . 5
4 vdwlem3.w . . . . . 6
5 vdwlem3.a . . . . . . . . 9
6 elfznn 11743 . . . . . . . . 9
75, 6syl 16 . . . . . . . 8
8 nnm1nn0 10862 . . . . . . . 8
97, 8syl 16 . . . . . . 7
10 vdwlem3.v . . . . . . 7
11 nn0nnaddcl 10852 . . . . . . 7
129, 10, 11syl2anc 661 . . . . . 6
134, 12nnmulcld 10608 . . . . 5
143, 13nnaddcld 10607 . . . 4
1514nnred 10576 . . 3
167, 10nnaddcld 10607 . . . . 5
174, 16nnmulcld 10608 . . . 4
1817nnred 10576 . . 3
19 2nn 10718 . . . . . 6
20 nnmulcl 10584 . . . . . 6
2119, 10, 20sylancr 663 . . . . 5
224, 21nnmulcld 10608 . . . 4
2322nnred 10576 . . 3
24 elfzle2 11719 . . . . . 6
251, 24syl 16 . . . . 5
26 nnre 10568 . . . . . . 7
27 nnre 10568 . . . . . . 7
28 nnre 10568 . . . . . . 7
29 leadd1 10045 . . . . . . 7
3026, 27, 28, 29syl3an 1270 . . . . . 6
313, 4, 13, 30syl3anc 1228 . . . . 5
3225, 31mpbid 210 . . . 4
334nncnd 10577 . . . . . 6
34 1cnd 9633 . . . . . 6
3512nncnd 10577 . . . . . 6
3633, 34, 35adddid 9641 . . . . 5
379nn0cnd 10879 . . . . . . . 8
3810nncnd 10577 . . . . . . . 8
3934, 37, 38addassd 9639 . . . . . . 7
40 ax-1cn 9571 . . . . . . . . 9
417nncnd 10577 . . . . . . . . 9
42 pncan3 9851 . . . . . . . . 9
4340, 41, 42sylancr 663 . . . . . . . 8
4443oveq1d 6311 . . . . . . 7
4539, 44eqtr3d 2500 . . . . . 6
4645oveq2d 6312 . . . . 5
4733mulid1d 9634 . . . . . 6
4847oveq1d 6311 . . . . 5
4936, 46, 483eqtr3d 2506 . . . 4
5032, 49breqtrrd 4478 . . 3
517nnred 10576 . . . . . 6
5210nnred 10576 . . . . . 6
53 elfzle2 11719 . . . . . . 7
545, 53syl 16 . . . . . 6
5551, 52, 52, 54leadd1dd 10191 . . . . 5
56382timesd 10806 . . . . 5
5755, 56breqtrrd 4478 . . . 4
5816nnred 10576 . . . . 5
5921nnred 10576 . . . . 5
604nnred 10576 . . . . 5
614nngt0d 10604 . . . . 5
62 lemul2 10420 . . . . 5
6358, 59, 60, 61, 62syl112anc 1232 . . . 4
6457, 63mpbid 210 . . 3
6515, 18, 23, 50, 64letrd 9760 . 2
66 nnuz 11145 . . . 4
6714, 66syl6eleq 2555 . . 3
6822nnzd 10993 . . 3
69 elfz5 11709 . . 3
7067, 68, 69syl2anc 661 . 2
7165, 70mpbird 232 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  e.wcel 1818   class class class wbr 4452  `cfv 5593  (class class class)co 6296   cc 9511   cr 9512  0cc0 9513  1c1 9514   caddc 9516   cmul 9518   clt 9649   cle 9650   cmin 9828   cn 10561  2c2 10610   cn0 10820   cz 10889   cuz 11110   cfz 11701
This theorem is referenced by:  vdwlem4  14502  vdwlem6  14504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-nn 10562  df-2 10619  df-n0 10821  df-z 10890  df-uz 11111  df-fz 11702
  Copyright terms: Public domain W3C validator