![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > vdwlem3 | Unicode version |
Description: Lemma for vdw 14512. (Contributed by Mario Carneiro, 13-Sep-2014.) |
Ref | Expression |
---|---|
vdwlem3.v | |
vdwlem3.w | |
vdwlem3.a | |
vdwlem3.b |
Ref | Expression |
---|---|
vdwlem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwlem3.b | . . . . . 6 | |
2 | elfznn 11743 | . . . . . 6 | |
3 | 1, 2 | syl 16 | . . . . 5 |
4 | vdwlem3.w | . . . . . 6 | |
5 | vdwlem3.a | . . . . . . . . 9 | |
6 | elfznn 11743 | . . . . . . . . 9 | |
7 | 5, 6 | syl 16 | . . . . . . . 8 |
8 | nnm1nn0 10862 | . . . . . . . 8 | |
9 | 7, 8 | syl 16 | . . . . . . 7 |
10 | vdwlem3.v | . . . . . . 7 | |
11 | nn0nnaddcl 10852 | . . . . . . 7 | |
12 | 9, 10, 11 | syl2anc 661 | . . . . . 6 |
13 | 4, 12 | nnmulcld 10608 | . . . . 5 |
14 | 3, 13 | nnaddcld 10607 | . . . 4 |
15 | 14 | nnred 10576 | . . 3 |
16 | 7, 10 | nnaddcld 10607 | . . . . 5 |
17 | 4, 16 | nnmulcld 10608 | . . . 4 |
18 | 17 | nnred 10576 | . . 3 |
19 | 2nn 10718 | . . . . . 6 | |
20 | nnmulcl 10584 | . . . . . 6 | |
21 | 19, 10, 20 | sylancr 663 | . . . . 5 |
22 | 4, 21 | nnmulcld 10608 | . . . 4 |
23 | 22 | nnred 10576 | . . 3 |
24 | elfzle2 11719 | . . . . . 6 | |
25 | 1, 24 | syl 16 | . . . . 5 |
26 | nnre 10568 | . . . . . . 7 | |
27 | nnre 10568 | . . . . . . 7 | |
28 | nnre 10568 | . . . . . . 7 | |
29 | leadd1 10045 | . . . . . . 7 | |
30 | 26, 27, 28, 29 | syl3an 1270 | . . . . . 6 |
31 | 3, 4, 13, 30 | syl3anc 1228 | . . . . 5 |
32 | 25, 31 | mpbid 210 | . . . 4 |
33 | 4 | nncnd 10577 | . . . . . 6 |
34 | 1cnd 9633 | . . . . . 6 | |
35 | 12 | nncnd 10577 | . . . . . 6 |
36 | 33, 34, 35 | adddid 9641 | . . . . 5 |
37 | 9 | nn0cnd 10879 | . . . . . . . 8 |
38 | 10 | nncnd 10577 | . . . . . . . 8 |
39 | 34, 37, 38 | addassd 9639 | . . . . . . 7 |
40 | ax-1cn 9571 | . . . . . . . . 9 | |
41 | 7 | nncnd 10577 | . . . . . . . . 9 |
42 | pncan3 9851 | . . . . . . . . 9 | |
43 | 40, 41, 42 | sylancr 663 | . . . . . . . 8 |
44 | 43 | oveq1d 6311 | . . . . . . 7 |
45 | 39, 44 | eqtr3d 2500 | . . . . . 6 |
46 | 45 | oveq2d 6312 | . . . . 5 |
47 | 33 | mulid1d 9634 | . . . . . 6 |
48 | 47 | oveq1d 6311 | . . . . 5 |
49 | 36, 46, 48 | 3eqtr3d 2506 | . . . 4 |
50 | 32, 49 | breqtrrd 4478 | . . 3 |
51 | 7 | nnred 10576 | . . . . . 6 |
52 | 10 | nnred 10576 | . . . . . 6 |
53 | elfzle2 11719 | . . . . . . 7 | |
54 | 5, 53 | syl 16 | . . . . . 6 |
55 | 51, 52, 52, 54 | leadd1dd 10191 | . . . . 5 |
56 | 38 | 2timesd 10806 | . . . . 5 |
57 | 55, 56 | breqtrrd 4478 | . . . 4 |
58 | 16 | nnred 10576 | . . . . 5 |
59 | 21 | nnred 10576 | . . . . 5 |
60 | 4 | nnred 10576 | . . . . 5 |
61 | 4 | nngt0d 10604 | . . . . 5 |
62 | lemul2 10420 | . . . . 5 | |
63 | 58, 59, 60, 61, 62 | syl112anc 1232 | . . . 4 |
64 | 57, 63 | mpbid 210 | . . 3 |
65 | 15, 18, 23, 50, 64 | letrd 9760 | . 2 |
66 | nnuz 11145 | . . . 4 | |
67 | 14, 66 | syl6eleq 2555 | . . 3 |
68 | 22 | nnzd 10993 | . . 3 |
69 | elfz5 11709 | . . 3 | |
70 | 67, 68, 69 | syl2anc 661 | . 2 |
71 | 65, 70 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 clt 9649 cle 9650 cmin 9828 cn 10561 2 c2 10610 cn0 10820
cz 10889 cuz 11110
cfz 11701 |
This theorem is referenced by: vdwlem4 14502 vdwlem6 14504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 |
Copyright terms: Public domain | W3C validator |