![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > vdwpc | Unicode version |
Description: The predicate " The coloring contains a polychromatic -tuple of AP's of length ". A polychromatic -tuple of AP's is a set of AP's with the same base point but different step lengths, such that each individual AP is monochromatic, but the AP's all have mutually distinct colors. (The common basepoint is not required to have the same color as any of the AP's.) (Contributed by Mario Carneiro, 18-Aug-2014.) |
Ref | Expression |
---|---|
vdwmc.1 | |
vdwmc.2 | |
vdwmc.3 | |
vdwpc.4 | |
vdwpc.5 |
Ref | Expression |
---|---|
vdwpc |
J
,, M
,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vdwpc.4 | . 2 | |
2 | vdwmc.2 | . 2 | |
3 | vdwmc.3 | . . 3 | |
4 | vdwmc.1 | . . 3 | |
5 | fex 6145 | . . 3 | |
6 | 3, 4, 5 | sylancl 662 | . 2 |
7 | df-br 4453 | . . . 4 | |
8 | df-vdwpc 14488 | . . . . 5 | |
9 | 8 | eleq2i 2535 | . . . 4 |
10 | 7, 9 | bitri 249 | . . 3 |
11 | simp1 996 | . . . . . . . . 9 | |
12 | 11 | oveq2d 6312 | . . . . . . . 8 |
13 | vdwpc.5 | . . . . . . . 8 | |
14 | 12, 13 | syl6eqr 2516 | . . . . . . 7 |
15 | 14 | oveq2d 6312 | . . . . . 6 |
16 | simp2 997 | . . . . . . . . . . 11 | |
17 | 16 | fveq2d 5875 | . . . . . . . . . 10 |
18 | 17 | oveqd 6313 | . . . . . . . . 9 |
19 | simp3 998 | . . . . . . . . . . 11 | |
20 | 19 | cnveqd 5183 | . . . . . . . . . 10 |
21 | 19 | fveq1d 5873 | . . . . . . . . . . 11 |
22 | 21 | sneqd 4041 | . . . . . . . . . 10 |
23 | 20, 22 | imaeq12d 5343 | . . . . . . . . 9 |
24 | 18, 23 | sseq12d 3532 | . . . . . . . 8 |
25 | 14, 24 | raleqbidv 3068 | . . . . . . 7 |
26 | 14, 21 | mpteq12dv 4530 | . . . . . . . . . 10 |
27 | 26 | rneqd 5235 | . . . . . . . . 9 |
28 | 27 | fveq2d 5875 | . . . . . . . 8 |
29 | 28, 11 | eqeq12d 2479 | . . . . . . 7 |
30 | 25, 29 | anbi12d 710 | . . . . . 6 |
31 | 15, 30 | rexeqbidv 3069 | . . . . 5 |
32 | 31 | rexbidv 2968 | . . . 4 |
33 | 32 | eloprabga 6389 | . . 3 |
34 | 10, 33 | syl5bb 257 | . 2 |
35 | 1, 2, 6, 34 | syl3anc 1228 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109
C_ wss 3475 { csn 4029 <. cop 4035
class class class wbr 4452 e. cmpt 4510
`' ccnv 5003 ran crn 5005 " cima 5007
--> wf 5589 ` cfv 5593 (class class class)co 6296
{ coprab 6297 cmap 7439
1 c1 9514 caddc 9516 cn 10561 cn0 10820
cfz 11701 chash 12405 cvdwa 14483 cvdwp 14485 |
This theorem is referenced by: vdwlem6 14504 vdwlem7 14505 vdwlem8 14506 vdwlem11 14509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-vdwpc 14488 |
Copyright terms: Public domain | W3C validator |