MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vnex Unicode version

Theorem vnex 4592
Description: The universal class does not exist. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
vnex

Proof of Theorem vnex
StepHypRef Expression
1 vprc 4590 . 2
2 isset 3113 . 2
31, 2mtbi 298 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  =wceq 1395  E.wex 1612  e.wcel 1818   cvv 3109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
  Copyright terms: Public domain W3C validator