![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > vprc | Unicode version |
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
Ref | Expression |
---|---|
vprc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 4589 | . . 3 | |
2 | vex 3112 | . . . . . . 7 | |
3 | 2 | tbt 344 | . . . . . 6 |
4 | 3 | albii 1640 | . . . . 5 |
5 | dfcleq 2450 | . . . . 5 | |
6 | 4, 5 | bitr4i 252 | . . . 4 |
7 | 6 | exbii 1667 | . . 3 |
8 | 1, 7 | mtbi 298 | . 2 |
9 | isset 3113 | . 2 | |
10 | 8, 9 | mtbir 299 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 cvv 3109 |
This theorem is referenced by: nvel 4591 vnex 4592 intex 4608 intnex 4609 snnex 6606 iprc 6735 elfi2 7894 fi0 7900 ruALT 8049 cardmin2 8400 00lsp 17627 fveqvfvv 32209 ndmaovcl 32288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |