![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > vss | Unicode version |
Description: Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
vss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3523 | . . 3 | |
2 | 1 | biantrur 506 | . 2 |
3 | eqss 3518 | . 2 | |
4 | 2, 3 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 cvv 3109
C_ wss 3475 |
This theorem is referenced by: vdif0 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |