MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl4g Unicode version

Theorem vtocl4g 3178
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019.)
Hypotheses
Ref Expression
vtocl4ga.1
vtocl4ga.2
vtocl4ga.3
vtocl4ga.4
vtocl4g.5
Assertion
Ref Expression
vtocl4g
Distinct variable groups:   , , , ,   , , ,   , ,   ,   , , , ,   ,S, , ,   , , , ,   ,Q, , ,   ,   ,   ,   ,

Proof of Theorem vtocl4g
StepHypRef Expression
1 vtocl4ga.3 . . . 4
21imbi2d 316 . . 3
3 vtocl4ga.4 . . . 4
43imbi2d 316 . . 3
5 vtocl4ga.1 . . . 4
6 vtocl4ga.2 . . . 4
7 vtocl4g.5 . . . 4
85, 6, 7vtocl2g 3171 . . 3
92, 4, 8vtocl2g 3171 . 2
109impcom 430 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818
This theorem is referenced by:  vtocl4ga  3179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111
  Copyright terms: Public domain W3C validator