![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > vtocldf | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 | |
vtocld.2 | |
vtocld.3 | |
vtocldf.4 | |
vtocldf.5 | |
vtocldf.6 |
Ref | Expression |
---|---|
vtocldf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocldf.5 | . 2 | |
2 | vtocldf.6 | . 2 | |
3 | vtocldf.4 | . . 3 | |
4 | vtocld.2 | . . . 4 | |
5 | 4 | ex 434 | . . 3 |
6 | 3, 5 | alrimi 1877 | . 2 |
7 | vtocld.3 | . . 3 | |
8 | 3, 7 | alrimi 1877 | . 2 |
9 | vtocld.1 | . 2 | |
10 | vtoclgft 3157 | . 2 | |
11 | 1, 2, 6, 8, 9, 10 | syl221anc 1239 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
F/ wnf 1616 e. wcel 1818 F/_ wnfc 2605 |
This theorem is referenced by: vtocld 3159 iota2df 5580 riotasv2d 34688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |