Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocle Unicode version

Theorem vtocle 3183
 Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
vtocle.1
vtocle.2
Assertion
Ref Expression
vtocle
Distinct variable groups:   ,   ,

Proof of Theorem vtocle
StepHypRef Expression
1 vtocle.1 . 2
2 vtocle.2 . . 3
32vtocleg 3180 . 2
41, 3ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818   cvv 3109 This theorem is referenced by:  zfrepclf  4569  tz6.12i  5891  eloprabga  6389  cfflb  8660  axcc3  8839  nn0ind-raph  10989 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
 Copyright terms: Public domain W3C validator