MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclef Unicode version

Theorem vtoclef 3182
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
vtoclef.1
vtoclef.2
vtoclef.3
Assertion
Ref Expression
vtoclef
Distinct variable group:   ,

Proof of Theorem vtoclef
StepHypRef Expression
1 vtoclef.2 . . 3
21isseti 3115 . 2
3 vtoclef.1 . . 3
4 vtoclef.3 . . 3
53, 4exlimi 1912 . 2
62, 5ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  E.wex 1612  F/wnf 1616  e.wcel 1818   cvv 3109
This theorem is referenced by:  nn0ind-raph  10989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
  Copyright terms: Public domain W3C validator