Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocleg Unicode version

Theorem vtocleg 3180
 Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
vtocleg.1
Assertion
Ref Expression
vtocleg
Distinct variable groups:   ,   ,

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 3120 . 2
2 vtocleg.1 . . 3
32exlimiv 1722 . 2
41, 3syl 16 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  E.wex 1612  e.wcel 1818 This theorem is referenced by:  vtocle  3183  spsbc  3340  prex  4694  avril1  25171  frege58c  37948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
 Copyright terms: Public domain W3C validator