MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocleg Unicode version

Theorem vtocleg 3152
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
vtocleg.1
Assertion
Ref Expression
vtocleg
Distinct variable groups:   ,   ,

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 3092 . 2
2 vtocleg.1 . . 3
32exlimiv 1689 . 2
41, 3syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1370  E.wex 1587  e.wcel 1758
This theorem is referenced by:  vtocle  3155  spsbc  3310  prex  4651  avril1  24125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-12 1794  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-v 3083
  Copyright terms: Public domain W3C validator