Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclegft Unicode version

Theorem vtoclegft 3181
 Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3182.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
Assertion
Ref Expression
vtoclegft
Distinct variable group:   ,

Proof of Theorem vtoclegft
StepHypRef Expression
1 elisset 3120 . . . 4
2 exim 1654 . . . 4
31, 2mpan9 469 . . 3
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\w3a 973  A.wal 1393  =wceq 1395  E.wex 1612  F/wnf 1616  e.wcel 1818 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111