![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > vtoclg1f | Unicode version |
Description: Version of vtoclgf 3165 with one non-freeness hypothesis replaced with a dv condition, thus avoiding dependency on ax-11 1842 and ax-13 1999. (Contributed by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
vtoclg1f.nf | |
vtoclg1f.maj | |
vtoclg1f.min |
Ref | Expression |
---|---|
vtoclg1f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | isset 3113 | . . 3 | |
3 | vtoclg1f.nf | . . . 4 | |
4 | vtoclg1f.min | . . . . 5 | |
5 | vtoclg1f.maj | . . . . 5 | |
6 | 4, 5 | mpbii 211 | . . . 4 |
7 | 3, 6 | exlimi 1912 | . . 3 |
8 | 2, 7 | sylbi 195 | . 2 |
9 | 1, 8 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 E. wex 1612 F/ wnf 1616
e. wcel 1818 cvv 3109 |
This theorem is referenced by: vtoclg 3167 ceqsexg 3231 mob 3281 opeliunxp2 5146 fvopab5 5979 cnextfvval 20565 dvfsumlem2 22428 dvfsumlem4 22430 fmul01 31574 fmuldfeq 31577 fmul01lt1lem1 31578 cncfiooicclem1 31696 stoweidlem3 31785 stoweidlem26 31808 stoweidlem31 31813 stoweidlem43 31825 stoweidlem51 31833 fourierdlem86 31975 fourierdlem89 31978 fourierdlem91 31980 bnj981 34008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |