![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > vtoclgaf | Unicode version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgaf.1 | |
vtoclgaf.2 | |
vtoclgaf.3 | |
vtoclgaf.4 |
Ref | Expression |
---|---|
vtoclgaf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclgaf.1 | . . 3 | |
2 | 1 | nfel1 2635 | . . . 4 |
3 | vtoclgaf.2 | . . . 4 | |
4 | 2, 3 | nfim 1920 | . . 3 |
5 | eleq1 2529 | . . . 4 | |
6 | vtoclgaf.3 | . . . 4 | |
7 | 5, 6 | imbi12d 320 | . . 3 |
8 | vtoclgaf.4 | . . 3 | |
9 | 1, 4, 7, 8 | vtoclgf 3165 | . 2 |
10 | 9 | pm2.43i 47 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 F/ wnf 1616 e. wcel 1818
F/_ wnfc 2605 |
This theorem is referenced by: vtoclga 3173 ssiun2s 4374 fvmptss 5964 fvmptf 5972 fmptco 6064 tfis 6689 inar1 9174 sumss 13546 fprodn0 13783 prmind2 14228 lss1d 17609 itg2splitlem 22155 dgrle 22640 cnlnadjlem5 26990 stoweidlem26 31808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |