![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > vtoclgf | Unicode version |
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgf.1 | |
vtoclgf.2 | |
vtoclgf.3 | |
vtoclgf.4 |
Ref | Expression |
---|---|
vtoclgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | vtoclgf.1 | . . . 4 | |
3 | 2 | issetf 3114 | . . 3 |
4 | vtoclgf.2 | . . . 4 | |
5 | vtoclgf.4 | . . . . 5 | |
6 | vtoclgf.3 | . . . . 5 | |
7 | 5, 6 | mpbii 211 | . . . 4 |
8 | 4, 7 | exlimi 1912 | . . 3 |
9 | 3, 8 | sylbi 195 | . 2 |
10 | 1, 9 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 E. wex 1612 F/ wnf 1616
e. wcel 1818 F/_ wnfc 2605 cvv 3109 |
This theorem is referenced by: vtocl2gf 3169 vtocl3gf 3170 vtoclgaf 3172 elabgf 3244 ssiun2sf 27427 subtr 30132 subtr2 30133 fsumsplit1 31573 fmuldfeqlem1 31576 fprodsplit1f 31593 climsuse 31614 dvnmptdivc 31735 dvmptfprodlem 31741 stoweidlem59 31841 fourierdlem31 31920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |