Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclri Unicode version

Theorem vtoclri 3184
 Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
vtoclri.1
vtoclri.2
Assertion
Ref Expression
vtoclri
Distinct variable groups:   ,   ,   ,

Proof of Theorem vtoclri
StepHypRef Expression
1 vtoclri.1 . 2
2 vtoclri.2 . . 3
32rspec 2825 . 2
41, 3vtoclga 3173 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  e.wcel 1818  A.wral 2807 This theorem is referenced by:  alephreg  8978  arch  10817  harmonicbnd  23333  harmonicbnd2  23334  ghomgrpilem1  29025  heiborlem8  30314  fourierdlem62  31951  srhmsubclem1  32881  srhmsubc  32884  srhmsubcOLDlem1  32900  srhmsubcOLD  32903 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111
 Copyright terms: Public domain W3C validator