![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > wdom2d | Unicode version |
Description: Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep 4563). (Contributed by Stefan O'Rear, 13-Feb-2015.) |
Ref | Expression |
---|---|
wdom2d.a | |
wdom2d.b | |
wdom2d.o |
Ref | Expression |
---|---|
wdom2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdom2d.b | . . . . . 6 | |
2 | rabexg 4602 | . . . . . 6 | |
3 | 1, 2 | syl 16 | . . . . 5 |
4 | wdom2d.a | . . . . 5 | |
5 | xpexg 6602 | . . . . 5 | |
6 | 3, 4, 5 | syl2anc 661 | . . . 4 |
7 | csbeq1 3437 | . . . . . . . . . 10 | |
8 | 7 | eleq1d 2526 | . . . . . . . . 9 |
9 | 8 | elrab 3257 | . . . . . . . 8 |
10 | 9 | simprbi 464 | . . . . . . 7 |
11 | 10 | adantl 466 | . . . . . 6 |
12 | eqid 2457 | . . . . . 6 | |
13 | 11, 12 | fmptd 6055 | . . . . 5 |
14 | fssxp 5748 | . . . . 5 | |
15 | 13, 14 | syl 16 | . . . 4 |
16 | 6, 15 | ssexd 4599 | . . 3 |
17 | wdom2d.o | . . . . . . . 8 | |
18 | eleq1 2529 | . . . . . . . . . . . 12 | |
19 | 18 | biimpcd 224 | . . . . . . . . . . 11 |
20 | 19 | ancrd 554 | . . . . . . . . . 10 |
21 | 20 | adantl 466 | . . . . . . . . 9 |
22 | 21 | reximdv 2931 | . . . . . . . 8 |
23 | 17, 22 | mpd 15 | . . . . . . 7 |
24 | nfv 1707 | . . . . . . . 8 | |
25 | nfcsb1v 3450 | . . . . . . . . . 10 | |
26 | 25 | nfel1 2635 | . . . . . . . . 9 |
27 | 25 | nfeq2 2636 | . . . . . . . . 9 |
28 | 26, 27 | nfan 1928 | . . . . . . . 8 |
29 | csbeq1a 3443 | . . . . . . . . . 10 | |
30 | 29 | eleq1d 2526 | . . . . . . . . 9 |
31 | 29 | eqeq2d 2471 | . . . . . . . . 9 |
32 | 30, 31 | anbi12d 710 | . . . . . . . 8 |
33 | 24, 28, 32 | cbvrex 3081 | . . . . . . 7 |
34 | 23, 33 | sylib 196 | . . . . . 6 |
35 | csbeq1 3437 | . . . . . . . . . . . . 13 | |
36 | 35 | eleq1d 2526 | . . . . . . . . . . . 12 |
37 | 36 | elrab 3257 | . . . . . . . . . . 11 |
38 | 37 | simprbi 464 | . . . . . . . . . 10 |
39 | csbeq1 3437 | . . . . . . . . . . 11 | |
40 | 39, 12 | fvmptg 5954 | . . . . . . . . . 10 |
41 | 38, 40 | mpdan 668 | . . . . . . . . 9 |
42 | 41 | eqeq2d 2471 | . . . . . . . 8 |
43 | 42 | rexbiia 2958 | . . . . . . 7 |
44 | 36 | rexrab 3263 | . . . . . . 7 |
45 | 43, 44 | bitri 249 | . . . . . 6 |
46 | 34, 45 | sylibr 212 | . . . . 5 |
47 | 46 | ralrimiva 2871 | . . . 4 |
48 | dffo3 6046 | . . . 4 | |
49 | 13, 47, 48 | sylanbrc 664 | . . 3 |
50 | fowdom 8018 | . . 3 | |
51 | 16, 49, 50 | syl2anc 661 | . 2 |
52 | ssrab2 3584 | . . . 4 | |
53 | ssdomg 7581 | . . . 4 | |
54 | 52, 53 | mpi 17 | . . 3 |
55 | domwdom 8021 | . . 3 | |
56 | 1, 54, 55 | 3syl 20 | . 2 |
57 | wdomtr 8022 | . 2 | |
58 | 51, 56, 57 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
E. wrex 2808 { crab 2811 cvv 3109
[_ csb 3434 C_ wss 3475 class class class wbr 4452
e. cmpt 4510 X. cxp 5002 --> wf 5589
-onto-> wfo 5591
` cfv 5593 cdom 7534 cwdom 8004 |
This theorem is referenced by: wdomd 8028 brwdom3 8029 unwdomg 8031 xpwdomg 8032 wdom2d2 30977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-wdom 8006 |
Copyright terms: Public domain | W3C validator |