![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > wdomima2g | Unicode version |
Description: A set is weakly dominant over its image under any function. This version of wdomimag 8034 is stated so as to avoid ax-rep 4563. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
wdomima2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5017 | . 2 | |
2 | funres 5632 | . . . . . . . 8 | |
3 | funforn 5807 | . . . . . . . 8 | |
4 | 2, 3 | sylib 196 | . . . . . . 7 |
5 | 4 | 3ad2ant1 1017 | . . . . . 6 |
6 | fof 5800 | . . . . . 6 | |
7 | 5, 6 | syl 16 | . . . . 5 |
8 | dmres 5299 | . . . . . . 7 | |
9 | inss1 3717 | . . . . . . 7 | |
10 | 8, 9 | eqsstri 3533 | . . . . . 6 |
11 | simp2 997 | . . . . . 6 | |
12 | ssexg 4598 | . . . . . 6 | |
13 | 10, 11, 12 | sylancr 663 | . . . . 5 |
14 | simp3 998 | . . . . . 6 | |
15 | 1, 14 | syl5eqelr 2550 | . . . . 5 |
16 | fex2 6755 | . . . . 5 | |
17 | 7, 13, 15, 16 | syl3anc 1228 | . . . 4 |
18 | fowdom 8018 | . . . 4 | |
19 | 17, 5, 18 | syl2anc 661 | . . 3 |
20 | ssdomg 7581 | . . . . . 6 | |
21 | 10, 20 | mpi 17 | . . . . 5 |
22 | domwdom 8021 | . . . . 5 | |
23 | 21, 22 | syl 16 | . . . 4 |
24 | 23 | 3ad2ant2 1018 | . . 3 |
25 | wdomtr 8022 | . . 3 | |
26 | 19, 24, 25 | syl2anc 661 | . 2 |
27 | 1, 26 | syl5eqbr 4485 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ w3a 973
e. wcel 1818 cvv 3109
i^i cin 3474 C_ wss 3475 class class class wbr 4452
dom cdm 5004 ran crn 5005 |` cres 5006
" cima 5007 Fun wfun 5587 --> wf 5589
-onto-> wfo 5591
cdom 7534 cwdom 8004 |
This theorem is referenced by: wdomimag 8034 unxpwdom2 8035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-wdom 8006 |
Copyright terms: Public domain | W3C validator |