![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > weisoeq | Unicode version |
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 6785. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
weisoeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 | |
2 | isocnv 6226 | . . . 4 | |
3 | isotr 6232 | . . . 4 | |
4 | 1, 2, 3 | syl2anr 478 | . . 3 |
5 | weniso 6250 | . . . 4 | |
6 | 5 | 3expa 1196 | . . 3 |
7 | 4, 6 | sylan2 474 | . 2 |
8 | simprl 756 | . . . 4 | |
9 | isof1o 6221 | . . . 4 | |
10 | f1of1 5820 | . . . 4 | |
11 | 8, 9, 10 | 3syl 20 | . . 3 |
12 | simprr 757 | . . . 4 | |
13 | isof1o 6221 | . . . 4 | |
14 | f1of1 5820 | . . . 4 | |
15 | 12, 13, 14 | 3syl 20 | . . 3 |
16 | f1eqcocnv 6204 | . . 3 | |
17 | 11, 15, 16 | syl2anc 661 | . 2 |
18 | 7, 17 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 cid 4795
Se wse 4841 We wwe 4842 `' ccnv 5003
|` cres 5006 o. ccom 5008 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 Isom wiso 5594 |
This theorem is referenced by: weisoeq2 6252 wemoiso 6785 oieu 7985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |