![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > wemaplem1 | Unicode version |
Description: Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
wemapso.t |
Ref | Expression |
---|---|
wemaplem1 |
P
,,,,,, Q
,,,,,, ,,,,,, S
,,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5870 | . . . . . 6 | |
2 | fveq1 5870 | . . . . . 6 | |
3 | 1, 2 | breqan12d 4467 | . . . . 5 |
4 | fveq1 5870 | . . . . . . . 8 | |
5 | fveq1 5870 | . . . . . . . 8 | |
6 | 4, 5 | eqeqan12d 2480 | . . . . . . 7 |
7 | 6 | imbi2d 316 | . . . . . 6 |
8 | 7 | ralbidv 2896 | . . . . 5 |
9 | 3, 8 | anbi12d 710 | . . . 4 |
10 | 9 | rexbidv 2968 | . . 3 |
11 | fveq2 5871 | . . . . . 6 | |
12 | fveq2 5871 | . . . . . 6 | |
13 | 11, 12 | breq12d 4465 | . . . . 5 |
14 | breq2 4456 | . . . . . . . 8 | |
15 | 14 | imbi1d 317 | . . . . . . 7 |
16 | 15 | ralbidv 2896 | . . . . . 6 |
17 | breq1 4455 | . . . . . . . 8 | |
18 | fveq2 5871 | . . . . . . . . 9 | |
19 | fveq2 5871 | . . . . . . . . 9 | |
20 | 18, 19 | eqeq12d 2479 | . . . . . . . 8 |
21 | 17, 20 | imbi12d 320 | . . . . . . 7 |
22 | 21 | cbvralv 3084 | . . . . . 6 |
23 | 16, 22 | syl6bb 261 | . . . . 5 |
24 | 13, 23 | anbi12d 710 | . . . 4 |
25 | 24 | cbvrexv 3085 | . . 3 |
26 | 10, 25 | syl6bb 261 | . 2 |
27 | wemapso.t | . 2 | |
28 | 26, 27 | brabga 4766 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 class class class wbr 4452
{ copab 4509 ` cfv 5593 |
This theorem is referenced by: wemaplem2 7993 wemaplem3 7994 wemappo 7995 wemapsolem 7996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-iota 5556 df-fv 5601 |
Copyright terms: Public domain | W3C validator |