![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > wemaplem2 | Unicode version |
Description: Lemma for wemapso 7997. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
wemapso.t | |
wemaplem2.a | |
wemaplem2.p | |
wemaplem2.x | |
wemaplem2.q | |
wemaplem2.r | |
wemaplem2.s | |
wemaplem2.px1 | |
wemaplem2.px2 | |
wemaplem2.px3 | |
wemaplem2.xq1 | |
wemaplem2.xq2 | |
wemaplem2.xq3 |
Ref | Expression |
---|---|
wemaplem2 |
P
,,,,,,, Q
,,,,,,, ,,,,,,, S
,,,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wemaplem2.px1 | . . . 4 | |
2 | wemaplem2.xq1 | . . . 4 | |
3 | 1, 2 | ifcld 3984 | . . 3 |
4 | wemaplem2.px2 | . . . . . . 7 | |
5 | 4 | adantr 465 | . . . . . 6 |
6 | wemaplem2.xq3 | . . . . . . . 8 | |
7 | breq1 4455 | . . . . . . . . . 10 | |
8 | fveq2 5871 | . . . . . . . . . . 11 | |
9 | fveq2 5871 | . . . . . . . . . . 11 | |
10 | 8, 9 | eqeq12d 2479 | . . . . . . . . . 10 |
11 | 7, 10 | imbi12d 320 | . . . . . . . . 9 |
12 | 11 | rspcva 3208 | . . . . . . . 8 |
13 | 1, 6, 12 | syl2anc 661 | . . . . . . 7 |
14 | 13 | imp 429 | . . . . . 6 |
15 | 5, 14 | breqtrd 4476 | . . . . 5 |
16 | iftrue 3947 | . . . . . . . 8 | |
17 | 16 | fveq2d 5875 | . . . . . . 7 |
18 | 16 | fveq2d 5875 | . . . . . . 7 |
19 | 17, 18 | breq12d 4465 | . . . . . 6 |
20 | 19 | adantl 466 | . . . . 5 |
21 | 15, 20 | mpbird 232 | . . . 4 |
22 | wemaplem2.s | . . . . . . 7 | |
23 | 22 | adantr 465 | . . . . . 6 |
24 | wemaplem2.p | . . . . . . . . . 10 | |
25 | elmapi 7460 | . . . . . . . . . 10 | |
26 | 24, 25 | syl 16 | . . . . . . . . 9 |
27 | 26, 2 | ffvelrnd 6032 | . . . . . . . 8 |
28 | wemaplem2.x | . . . . . . . . . 10 | |
29 | elmapi 7460 | . . . . . . . . . 10 | |
30 | 28, 29 | syl 16 | . . . . . . . . 9 |
31 | 30, 2 | ffvelrnd 6032 | . . . . . . . 8 |
32 | wemaplem2.q | . . . . . . . . . 10 | |
33 | elmapi 7460 | . . . . . . . . . 10 | |
34 | 32, 33 | syl 16 | . . . . . . . . 9 |
35 | 34, 2 | ffvelrnd 6032 | . . . . . . . 8 |
36 | 27, 31, 35 | 3jca 1176 | . . . . . . 7 |
37 | 36 | adantr 465 | . . . . . 6 |
38 | fveq2 5871 | . . . . . . . . 9 | |
39 | fveq2 5871 | . . . . . . . . 9 | |
40 | 38, 39 | breq12d 4465 | . . . . . . . 8 |
41 | 4, 40 | syl5ibcom 220 | . . . . . . 7 |
42 | 41 | imp 429 | . . . . . 6 |
43 | wemaplem2.xq2 | . . . . . . 7 | |
44 | 43 | adantr 465 | . . . . . 6 |
45 | potr 4817 | . . . . . . 7 | |
46 | 45 | imp 429 | . . . . . 6 |
47 | 23, 37, 42, 44, 46 | syl22anc 1229 | . . . . 5 |
48 | ifeq1 3945 | . . . . . . . . 9 | |
49 | ifid 3978 | . . . . . . . . 9 | |
50 | 48, 49 | syl6eq 2514 | . . . . . . . 8 |
51 | 50 | fveq2d 5875 | . . . . . . 7 |
52 | 50 | fveq2d 5875 | . . . . . . 7 |
53 | 51, 52 | breq12d 4465 | . . . . . 6 |
54 | 53 | adantl 466 | . . . . 5 |
55 | 47, 54 | mpbird 232 | . . . 4 |
56 | wemaplem2.px3 | . . . . . . . 8 | |
57 | breq1 4455 | . . . . . . . . . 10 | |
58 | fveq2 5871 | . . . . . . . . . . 11 | |
59 | fveq2 5871 | . . . . . . . . . . 11 | |
60 | 58, 59 | eqeq12d 2479 | . . . . . . . . . 10 |
61 | 57, 60 | imbi12d 320 | . . . . . . . . 9 |
62 | 61 | rspcva 3208 | . . . . . . . 8 |
63 | 2, 56, 62 | syl2anc 661 | . . . . . . 7 |
64 | 63 | imp 429 | . . . . . 6 |
65 | 43 | adantr 465 | . . . . . 6 |
66 | 64, 65 | eqbrtrd 4472 | . . . . 5 |
67 | wemaplem2.r | . . . . . . . . 9 | |
68 | sopo 4822 | . . . . . . . . 9 | |
69 | 67, 68 | syl 16 | . . . . . . . 8 |
70 | po2nr 4818 | . . . . . . . 8 | |
71 | 69, 2, 1, 70 | syl12anc 1226 | . . . . . . 7 |
72 | nan 580 | . . . . . . 7 | |
73 | 71, 72 | mpbi 208 | . . . . . 6 |
74 | iffalse 3950 | . . . . . . . 8 | |
75 | 74 | fveq2d 5875 | . . . . . . 7 |
76 | 74 | fveq2d 5875 | . . . . . . 7 |
77 | 75, 76 | breq12d 4465 | . . . . . 6 |
78 | 73, 77 | syl 16 | . . . . 5 |
79 | 66, 78 | mpbird 232 | . . . 4 |
80 | solin 4828 | . . . . 5 | |
81 | 67, 1, 2, 80 | syl12anc 1226 | . . . 4 |
82 | 21, 55, 79, 81 | mpjao3dan 1295 | . . 3 |
83 | r19.26 2984 | . . . . 5 | |
84 | 56, 6, 83 | sylanbrc 664 | . . . 4 |
85 | 67, 1, 2 | 3jca 1176 | . . . . 5 |
86 | prth 571 | . . . . . . 7 | |
87 | eqtr 2483 | . . . . . . 7 | |
88 | 86, 87 | syl6 33 | . . . . . 6 |
89 | 88 | ralimi 2850 | . . . . 5 |
90 | simpl1 999 | . . . . . . . . 9 | |
91 | simpr 461 | . . . . . . . . 9 | |
92 | simpl2 1000 | . . . . . . . . 9 | |
93 | simpl3 1001 | . . . . . . . . 9 | |
94 | soltmin 5411 | . . . . . . . . 9 | |
95 | 90, 91, 92, 93, 94 | syl13anc 1230 | . . . . . . . 8 |
96 | 95 | biimpd 207 | . . . . . . 7 |
97 | 96 | imim1d 75 | . . . . . 6 |
98 | 97 | ralimdva 2865 | . . . . 5 |
99 | 85, 89, 98 | syl2im 38 | . . . 4 |
100 | 84, 99 | mpd 15 | . . 3 |
101 | fveq2 5871 | . . . . . 6 | |
102 | fveq2 5871 | . . . . . 6 | |
103 | 101, 102 | breq12d 4465 | . . . . 5 |
104 | breq2 4456 | . . . . . . 7 | |
105 | 104 | imbi1d 317 | . . . . . 6 |
106 | 105 | ralbidv 2896 | . . . . 5 |
107 | 103, 106 | anbi12d 710 | . . . 4 |
108 | 107 | rspcev 3210 | . . 3 |
109 | 3, 82, 100, 108 | syl12anc 1226 | . 2 |
110 | wemapso.t | . . . 4 | |
111 | 110 | wemaplem1 7992 | . . 3 |
112 | 24, 32, 111 | syl2anc 661 | . 2 |
113 | 109, 112 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 \/ w3o 972
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
if cif 3941 class class class wbr 4452
{ copab 4509 Po wpo 4803
Or wor 4804 --> wf 5589 ` cfv 5593
(class class class)co 6296 cmap 7439 |
This theorem is referenced by: wemaplem3 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-map 7441 |
Copyright terms: Public domain | W3C validator |