![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > wemappo | Unicode version |
Description: Construct lexicographic
order on a function space based on a
well-ordering of the indexes and a total ordering of the values.
Without totality on the values or least differing indexes, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
wemapso.t |
Ref | Expression |
---|---|
wemappo |
S
,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | simpll3 1037 | . . . . . . 7 | |
3 | elmapi 7460 | . . . . . . . . 9 | |
4 | 3 | adantl 466 | . . . . . . . 8 |
5 | 4 | ffvelrnda 6031 | . . . . . . 7 |
6 | poirr 4816 | . . . . . . 7 | |
7 | 2, 5, 6 | syl2anc 661 | . . . . . 6 |
8 | 7 | intnanrd 917 | . . . . 5 |
9 | 8 | nrexdv 2913 | . . . 4 |
10 | vex 3112 | . . . . 5 | |
11 | wemapso.t | . . . . . 6 | |
12 | 11 | wemaplem1 7992 | . . . . 5 |
13 | 10, 10, 12 | mp2an 672 | . . . 4 |
14 | 9, 13 | sylnibr 305 | . . 3 |
15 | simpll1 1035 | . . . . 5 | |
16 | simplr1 1038 | . . . . 5 | |
17 | simplr2 1039 | . . . . 5 | |
18 | simplr3 1040 | . . . . 5 | |
19 | simpll2 1036 | . . . . 5 | |
20 | simpll3 1037 | . . . . 5 | |
21 | simprl 756 | . . . . 5 | |
22 | simprr 757 | . . . . 5 | |
23 | 11, 15, 16, 17, 18, 19, 20, 21, 22 | wemaplem3 7994 | . . . 4 |
24 | 23 | ex 434 | . . 3 |
25 | 14, 24 | ispod 4813 | . 2 |
26 | 1, 25 | syl3an1 1261 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 A. wral 2807
E. wrex 2808 cvv 3109
class class class wbr 4452 { copab 4509 Po wpo 4803
Or wor 4804 --> wf 5589 ` cfv 5593
(class class class)co 6296 cmap 7439 |
This theorem is referenced by: wemapsolem 7996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-map 7441 |
Copyright terms: Public domain | W3C validator |