![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > wemoiso2 | Unicode version |
Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
wemoiso2 |
S
, ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . . . 6 | |
2 | isof1o 6221 | . . . . . . . . . 10 | |
3 | f1ofo 5828 | . . . . . . . . . 10 | |
4 | forn 5803 | . . . . . . . . . 10 | |
5 | 2, 3, 4 | 3syl 20 | . . . . . . . . 9 |
6 | vex 3112 | . . . . . . . . . 10 | |
7 | 6 | rnex 6734 | . . . . . . . . 9 |
8 | 5, 7 | syl6eqelr 2554 | . . . . . . . 8 |
9 | 8 | ad2antrl 727 | . . . . . . 7 |
10 | exse 4848 | . . . . . . 7 | |
11 | 9, 10 | syl 16 | . . . . . 6 |
12 | 1, 11 | jca 532 | . . . . 5 |
13 | weisoeq2 6252 | . . . . 5 | |
14 | 12, 13 | sylancom 667 | . . . 4 |
15 | 14 | ex 434 | . . 3 |
16 | 15 | alrimivv 1720 | . 2 |
17 | isoeq1 6215 | . . 3 | |
18 | 17 | mo4 2337 | . 2 |
19 | 16, 18 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 e. wcel 1818
E* wmo 2283 cvv 3109
Se wse 4841 We wwe 4842 ran crn 5005
-onto-> wfo 5591
-1-1-onto-> wf1o 5592
Isom wiso 5594 |
This theorem is referenced by: finnisoeu 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |