![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > wloglei | Unicode version |
Description: Form of wlogle 10111 where both sides of the equivalence are proven rather than showing that they are equivalent to each other. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
wlogle.1 | |
wlogle.2 | |
wlogle.3 | |
wloglei.4 | |
wloglei.5 |
Ref | Expression |
---|---|
wloglei |
S
,,, ,, ,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlogle.3 | . . . 4 | |
2 | 1 | adantr 465 | . . 3 |
3 | simprr 757 | . . 3 | |
4 | 2, 3 | sseldd 3504 | . 2 |
5 | simprl 756 | . . 3 | |
6 | 2, 5 | sseldd 3504 | . 2 |
7 | vex 3112 | . . 3 | |
8 | vex 3112 | . . 3 | |
9 | eleq1 2529 | . . . . . . 7 | |
10 | eleq1 2529 | . . . . . . 7 | |
11 | 9, 10 | bi2anan9 873 | . . . . . 6 |
12 | 11 | anbi2d 703 | . . . . 5 |
13 | breq12 4457 | . . . . . 6 | |
14 | 13 | ancoms 453 | . . . . 5 |
15 | 12, 14 | anbi12d 710 | . . . 4 |
16 | wlogle.1 | . . . 4 | |
17 | 15, 16 | imbi12d 320 | . . 3 |
18 | vex 3112 | . . . 4 | |
19 | vex 3112 | . . . 4 | |
20 | ancom 450 | . . . . . . . 8 | |
21 | eleq1 2529 | . . . . . . . . 9 | |
22 | eleq1 2529 | . . . . . . . . 9 | |
23 | 21, 22 | bi2anan9 873 | . . . . . . . 8 |
24 | 20, 23 | syl5bb 257 | . . . . . . 7 |
25 | 24 | anbi2d 703 | . . . . . 6 |
26 | breq12 4457 | . . . . . . 7 | |
27 | 26 | ancoms 453 | . . . . . 6 |
28 | 25, 27 | anbi12d 710 | . . . . 5 |
29 | equcom 1794 | . . . . . . 7 | |
30 | equcom 1794 | . . . . . . 7 | |
31 | wlogle.2 | . . . . . . 7 | |
32 | 29, 30, 31 | syl2anb 479 | . . . . . 6 |
33 | 32 | bicomd 201 | . . . . 5 |
34 | 28, 33 | imbi12d 320 | . . . 4 |
35 | df-3an 975 | . . . . . 6 | |
36 | wloglei.4 | . . . . . 6 | |
37 | 35, 36 | sylan2br 476 | . . . . 5 |
38 | 37 | anassrs 648 | . . . 4 |
39 | 18, 19, 34, 38 | vtocl2 3162 | . . 3 |
40 | 7, 8, 17, 39 | vtocl2 3162 | . 2 |
41 | wloglei.5 | . . . 4 | |
42 | 35, 41 | sylan2br 476 | . . 3 |
43 | 42 | anassrs 648 | . 2 |
44 | 4, 6, 40, 43 | lecasei 9711 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
C_ wss 3475 class class class wbr 4452
cr 9512 cle 9650 |
This theorem is referenced by: wlogle 10111 rescon 28691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-pre-lttri 9587 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 |
Copyright terms: Public domain | W3C validator |