![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > wrdeqswrdlsw | Unicode version |
Description: Two words are equal iff they have the same length and the same prefix and the same last symbol. (Contributed by Alexander van der Vekens, 7-Aug-2018.) |
Ref | Expression |
---|---|
wrdeqswrdlsw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqwrd 12582 | . . 3 | |
2 | 1 | adantr 465 | . 2 |
3 | 0z 10900 | . . . . . . 7 | |
4 | lennncl 12563 | . . . . . . . . . 10 | |
5 | elnnuz 11146 | . . . . . . . . . . 11 | |
6 | 1e0p1 11032 | . . . . . . . . . . . . 13 | |
7 | 6 | fveq2i 5874 | . . . . . . . . . . . 12 |
8 | 7 | eleq2i 2535 | . . . . . . . . . . 11 |
9 | 5, 8 | sylbb 197 | . . . . . . . . . 10 |
10 | 4, 9 | syl 16 | . . . . . . . . 9 |
11 | 10 | ad2ant2r 746 | . . . . . . . 8 |
12 | 11 | adantr 465 | . . . . . . 7 |
13 | fzosplitsnm1 11890 | . . . . . . 7 | |
14 | 3, 12, 13 | sylancr 663 | . . . . . 6 |
15 | 14 | raleqdv 3060 | . . . . 5 |
16 | ralunb 3684 | . . . . 5 | |
17 | 15, 16 | syl6bb 261 | . . . 4 |
18 | ovex 6324 | . . . . . . . 8 | |
19 | fveq2 5871 | . . . . . . . . . 10 | |
20 | fveq2 5871 | . . . . . . . . . 10 | |
21 | 19, 20 | eqeq12d 2479 | . . . . . . . . 9 |
22 | 21 | ralsng 4064 | . . . . . . . 8 |
23 | 18, 22 | mp1i 12 | . . . . . . 7 |
24 | oveq1 6303 | . . . . . . . . . 10 | |
25 | 24 | fveq2d 5875 | . . . . . . . . 9 |
26 | 25 | eqeq2d 2471 | . . . . . . . 8 |
27 | 26 | adantl 466 | . . . . . . 7 |
28 | lsw 12585 | . . . . . . . . . . 11 | |
29 | 28 | adantr 465 | . . . . . . . . . 10 |
30 | 29 | eqcomd 2465 | . . . . . . . . 9 |
31 | lsw 12585 | . . . . . . . . . . 11 | |
32 | 31 | adantl 466 | . . . . . . . . . 10 |
33 | 32 | eqcomd 2465 | . . . . . . . . 9 |
34 | 30, 33 | eqeq12d 2479 | . . . . . . . 8 |
35 | 34 | ad2antrr 725 | . . . . . . 7 |
36 | 23, 27, 35 | 3bitrd 279 | . . . . . 6 |
37 | 36 | anbi2d 703 | . . . . 5 |
38 | ancom 450 | . . . . . 6 | |
39 | 38 | a1i 11 | . . . . 5 |
40 | eqid 2457 | . . . . . . . 8 | |
41 | 40 | biantrur 506 | . . . . . . 7 |
42 | 41 | a1i 11 | . . . . . 6 |
43 | an12 797 | . . . . . 6 | |
44 | 42, 43 | syl6bb 261 | . . . . 5 |
45 | 37, 39, 44 | 3bitrd 279 | . . . 4 |
46 | simpll 753 | . . . . . . 7 | |
47 | nnm1nn0 10862 | . . . . . . . . . 10 | |
48 | 4, 47 | syl 16 | . . . . . . . . 9 |
49 | 48 | ad2ant2r 746 | . . . . . . . 8 |
50 | 49 | adantr 465 | . . . . . . 7 |
51 | lencl 12562 | . . . . . . . . . 10 | |
52 | nn0re 10829 | . . . . . . . . . . 11 | |
53 | 52 | lem1d 10504 | . . . . . . . . . 10 |
54 | 51, 53 | syl 16 | . . . . . . . . 9 |
55 | 54 | adantr 465 | . . . . . . . 8 |
56 | 55 | ad2antrr 725 | . . . . . . 7 |
57 | breq2 4456 | . . . . . . . . . 10 | |
58 | 57 | eqcoms 2469 | . . . . . . . . 9 |
59 | 58 | adantl 466 | . . . . . . . 8 |
60 | 56, 59 | mpbird 232 | . . . . . . 7 |
61 | swrdeq 12671 | . . . . . . 7 | |
62 | 46, 50, 50, 56, 60, 61 | syl122anc 1237 | . . . . . 6 |
63 | 62 | bicomd 201 | . . . . 5 |
64 | 63 | anbi2d 703 | . . . 4 |
65 | 17, 45, 64 | 3bitrd 279 | . . 3 |
66 | 65 | pm5.32da 641 | . 2 |
67 | 3anass 977 | . . . 4 | |
68 | 67 | bicomi 202 | . . 3 |
69 | 68 | a1i 11 | . 2 |
70 | 2, 66, 69 | 3bitrd 279 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
cvv 3109
u. cun 3473 c0 3784 { csn 4029 <. cop 4035
class class class wbr 4452 ` cfv 5593
(class class class)co 6296 0 cc0 9513
1 c1 9514 caddc 9516 cle 9650 cmin 9828 cn 10561 cn0 10820
cz 10889 cuz 11110
cfzo 11824 chash 12405 Word cword 12534 clsw 12535 csubstr 12538 |
This theorem is referenced by: wwlkextinj 24730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-hash 12406 df-word 12542 df-lsw 12543 df-substr 12546 |
Copyright terms: Public domain | W3C validator |