![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xaddass2 | Unicode version |
Description: Associativity of extended real addition. See xaddass 11470 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddass2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1020 | . . . . . 6 | |
2 | xnegcl 11441 | . . . . . 6 | |
3 | 1, 2 | syl 16 | . . . . 5 |
4 | simp1r 1021 | . . . . . . 7 | |
5 | pnfxr 11350 | . . . . . . . . 9 | |
6 | xneg11 11443 | . . . . . . . . 9 | |
7 | 1, 5, 6 | sylancl 662 | . . . . . . . 8 |
8 | 7 | necon3bid 2715 | . . . . . . 7 |
9 | 4, 8 | mpbird 232 | . . . . . 6 |
10 | xnegpnf 11437 | . . . . . . 7 | |
11 | 10 | a1i 11 | . . . . . 6 |
12 | 9, 11 | neeqtrd 2752 | . . . . 5 |
13 | simp2l 1022 | . . . . . 6 | |
14 | xnegcl 11441 | . . . . . 6 | |
15 | 13, 14 | syl 16 | . . . . 5 |
16 | simp2r 1023 | . . . . . . 7 | |
17 | xneg11 11443 | . . . . . . . . 9 | |
18 | 13, 5, 17 | sylancl 662 | . . . . . . . 8 |
19 | 18 | necon3bid 2715 | . . . . . . 7 |
20 | 16, 19 | mpbird 232 | . . . . . 6 |
21 | 20, 11 | neeqtrd 2752 | . . . . 5 |
22 | simp3l 1024 | . . . . . 6 | |
23 | xnegcl 11441 | . . . . . 6 | |
24 | 22, 23 | syl 16 | . . . . 5 |
25 | simp3r 1025 | . . . . . . 7 | |
26 | xneg11 11443 | . . . . . . . . 9 | |
27 | 22, 5, 26 | sylancl 662 | . . . . . . . 8 |
28 | 27 | necon3bid 2715 | . . . . . . 7 |
29 | 25, 28 | mpbird 232 | . . . . . 6 |
30 | 29, 11 | neeqtrd 2752 | . . . . 5 |
31 | xaddass 11470 | . . . . 5 | |
32 | 3, 12, 15, 21, 24, 30, 31 | syl222anc 1244 | . . . 4 |
33 | xnegdi 11469 | . . . . . 6 | |
34 | 1, 13, 33 | syl2anc 661 | . . . . 5 |
35 | 34 | oveq1d 6311 | . . . 4 |
36 | xnegdi 11469 | . . . . . 6 | |
37 | 13, 22, 36 | syl2anc 661 | . . . . 5 |
38 | 37 | oveq2d 6312 | . . . 4 |
39 | 32, 35, 38 | 3eqtr4d 2508 | . . 3 |
40 | xaddcl 11465 | . . . . 5 | |
41 | 1, 13, 40 | syl2anc 661 | . . . 4 |
42 | xnegdi 11469 | . . . 4 | |
43 | 41, 22, 42 | syl2anc 661 | . . 3 |
44 | xaddcl 11465 | . . . . 5 | |
45 | 13, 22, 44 | syl2anc 661 | . . . 4 |
46 | xnegdi 11469 | . . . 4 | |
47 | 1, 45, 46 | syl2anc 661 | . . 3 |
48 | 39, 43, 47 | 3eqtr4d 2508 | . 2 |
49 | xaddcl 11465 | . . . 4 | |
50 | 41, 22, 49 | syl2anc 661 | . . 3 |
51 | xaddcl 11465 | . . . 4 | |
52 | 1, 45, 51 | syl2anc 661 | . . 3 |
53 | xneg11 11443 | . . 3 | |
54 | 50, 52, 53 | syl2anc 661 | . 2 |
55 | 48, 54 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 (class class class)co 6296
cpnf 9646 cmnf 9647
cxr 9648
cxne 11344 cxad 11345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-sub 9830 df-neg 9831 df-xneg 11347 df-xadd 11348 |
Copyright terms: Public domain | W3C validator |