![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xadddi2 | Unicode version |
Description: The assumption that the multiplier be real in xadddi 11516 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xadddi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . . 4 | |
2 | simp2l 1022 | . . . . 5 | |
3 | 2 | ad2antrr 725 | . . . 4 |
4 | simp3l 1024 | . . . . 5 | |
5 | 4 | ad2antrr 725 | . . . 4 |
6 | xadddi 11516 | . . . 4 | |
7 | 1, 3, 5, 6 | syl3anc 1228 | . . 3 |
8 | pnfxr 11350 | . . . . . 6 | |
9 | 4 | adantr 465 | . . . . . . 7 |
10 | 9 | adantr 465 | . . . . . 6 |
11 | xmulcl 11494 | . . . . . 6 | |
12 | 8, 10, 11 | sylancr 663 | . . . . 5 |
13 | 8, 9, 11 | sylancr 663 | . . . . . . 7 |
14 | simpl3r 1052 | . . . . . . . 8 | |
15 | 0lepnf 11369 | . . . . . . . . 9 | |
16 | xmulge0 11505 | . . . . . . . . 9 | |
17 | 8, 15, 16 | mpanl12 682 | . . . . . . . 8 |
18 | 9, 14, 17 | syl2anc 661 | . . . . . . 7 |
19 | ge0nemnf 11403 | . . . . . . 7 | |
20 | 13, 18, 19 | syl2anc 661 | . . . . . 6 |
21 | 20 | adantr 465 | . . . . 5 |
22 | xaddpnf2 11455 | . . . . 5 | |
23 | 12, 21, 22 | syl2anc 661 | . . . 4 |
24 | oveq1 6303 | . . . . . 6 | |
25 | oveq1 6303 | . . . . . 6 | |
26 | 24, 25 | oveq12d 6314 | . . . . 5 |
27 | xmulpnf2 11496 | . . . . . . 7 | |
28 | 2, 27 | sylan 471 | . . . . . 6 |
29 | 28 | oveq1d 6311 | . . . . 5 |
30 | 26, 29 | sylan9eqr 2520 | . . . 4 |
31 | oveq1 6303 | . . . . 5 | |
32 | xaddcl 11465 | . . . . . . . 8 | |
33 | 2, 4, 32 | syl2anc 661 | . . . . . . 7 |
34 | 33 | adantr 465 | . . . . . 6 |
35 | 0xr 9661 | . . . . . . . 8 | |
36 | 35 | a1i 11 | . . . . . . 7 |
37 | 2 | adantr 465 | . . . . . . 7 |
38 | simpr 461 | . . . . . . 7 | |
39 | xaddid1 11467 | . . . . . . . . 9 | |
40 | 37, 39 | syl 16 | . . . . . . . 8 |
41 | xleadd2a 11475 | . . . . . . . . 9 | |
42 | 36, 9, 37, 14, 41 | syl31anc 1231 | . . . . . . . 8 |
43 | 40, 42 | eqbrtrrd 4474 | . . . . . . 7 |
44 | 36, 37, 34, 38, 43 | xrltletrd 11393 | . . . . . 6 |
45 | xmulpnf2 11496 | . . . . . 6 | |
46 | 34, 44, 45 | syl2anc 661 | . . . . 5 |
47 | 31, 46 | sylan9eqr 2520 | . . . 4 |
48 | 23, 30, 47 | 3eqtr4rd 2509 | . . 3 |
49 | mnfxr 11352 | . . . . . . 7 | |
50 | xmulcl 11494 | . . . . . . 7 | |
51 | 49, 9, 50 | sylancr 663 | . . . . . 6 |
52 | xnegmnf 11438 | . . . . . . . . . . . 12 | |
53 | 52 | oveq1i 6306 | . . . . . . . . . . 11 |
54 | xmulneg1 11490 | . . . . . . . . . . . 12 | |
55 | 49, 9, 54 | sylancr 663 | . . . . . . . . . . 11 |
56 | 53, 55 | syl5reqr 2513 | . . . . . . . . . 10 |
57 | xnegpnf 11437 | . . . . . . . . . . 11 | |
58 | 57 | a1i 11 | . . . . . . . . . 10 |
59 | 56, 58 | eqeq12d 2479 | . . . . . . . . 9 |
60 | xneg11 11443 | . . . . . . . . . 10 | |
61 | 51, 8, 60 | sylancl 662 | . . . . . . . . 9 |
62 | 59, 61 | bitr3d 255 | . . . . . . . 8 |
63 | 62 | necon3bid 2715 | . . . . . . 7 |
64 | 20, 63 | mpbid 210 | . . . . . 6 |
65 | xaddmnf2 11457 | . . . . . 6 | |
66 | 51, 64, 65 | syl2anc 661 | . . . . 5 |
67 | 66 | adantr 465 | . . . 4 |
68 | oveq1 6303 | . . . . . 6 | |
69 | oveq1 6303 | . . . . . 6 | |
70 | 68, 69 | oveq12d 6314 | . . . . 5 |
71 | xmulmnf2 11498 | . . . . . . 7 | |
72 | 2, 71 | sylan 471 | . . . . . 6 |
73 | 72 | oveq1d 6311 | . . . . 5 |
74 | 70, 73 | sylan9eqr 2520 | . . . 4 |
75 | oveq1 6303 | . . . . 5 | |
76 | xmulmnf2 11498 | . . . . . 6 | |
77 | 34, 44, 76 | syl2anc 661 | . . . . 5 |
78 | 75, 77 | sylan9eqr 2520 | . . . 4 |
79 | 67, 74, 78 | 3eqtr4rd 2509 | . . 3 |
80 | simpl1 999 | . . . 4 | |
81 | elxr 11354 | . . . 4 | |
82 | 80, 81 | sylib 196 | . . 3 |
83 | 7, 48, 79, 82 | mpjao3dan 1295 | . 2 |
84 | simp1 996 | . . . . . 6 | |
85 | xmulcl 11494 | . . . . . 6 | |
86 | 84, 4, 85 | syl2anc 661 | . . . . 5 |
87 | 86 | adantr 465 | . . . 4 |
88 | xaddid2 11468 | . . . 4 | |
89 | 87, 88 | syl 16 | . . 3 |
90 | oveq2 6304 | . . . . . 6 | |
91 | 90 | eqcomd 2465 | . . . . 5 |
92 | xmul01 11488 | . . . . . 6 | |
93 | 92 | 3ad2ant1 1017 | . . . . 5 |
94 | 91, 93 | sylan9eqr 2520 | . . . 4 |
95 | 94 | oveq1d 6311 | . . 3 |
96 | oveq1 6303 | . . . . . 6 | |
97 | 96 | eqcomd 2465 | . . . . 5 |
98 | xaddid2 11468 | . . . . . 6 | |
99 | 4, 98 | syl 16 | . . . . 5 |
100 | 97, 99 | sylan9eqr 2520 | . . . 4 |
101 | 100 | oveq2d 6312 | . . 3 |
102 | 89, 95, 101 | 3eqtr4rd 2509 | . 2 |
103 | simp2r 1023 | . . 3 | |
104 | xrleloe 11379 | . . . 4 | |
105 | 35, 2, 104 | sylancr 663 | . . 3 |
106 | 103, 105 | mpbid 210 | . 2 |
107 | 83, 102, 106 | mpjaodan 786 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 \/ w3o 972
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 class class class wbr 4452
(class class class)co 6296 cr 9512 0 cc0 9513 cpnf 9646 cmnf 9647
cxr 9648
clt 9649 cle 9650 cxne 11344 cxad 11345
cxmu 11346 |
This theorem is referenced by: xadddi2r 11519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-xneg 11347 df-xadd 11348 df-xmul 11349 |
Copyright terms: Public domain | W3C validator |