![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xleadd1a | Unicode version |
Description: Extended real version of leadd1 10045; note that the converse implication is not true, unlike the real version (for example but ). (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xleadd1a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrr 762 | . . . . . . 7 | |
2 | simpr 461 | . . . . . . 7 | |
3 | simplrl 761 | . . . . . . 7 | |
4 | simpllr 760 | . . . . . . 7 | |
5 | 1, 2, 3, 4 | leadd1dd 10191 | . . . . . 6 |
6 | rexadd 11460 | . . . . . . 7 | |
7 | 1, 3, 6 | syl2anc 661 | . . . . . 6 |
8 | rexadd 11460 | . . . . . . 7 | |
9 | 2, 3, 8 | syl2anc 661 | . . . . . 6 |
10 | 5, 7, 9 | 3brtr4d 4482 | . . . . 5 |
11 | simpl1 999 | . . . . . . . . 9 | |
12 | simpl3 1001 | . . . . . . . . 9 | |
13 | xaddcl 11465 | . . . . . . . . 9 | |
14 | 11, 12, 13 | syl2anc 661 | . . . . . . . 8 |
15 | 14 | ad2antrr 725 | . . . . . . 7 |
16 | pnfge 11368 | . . . . . . 7 | |
17 | 15, 16 | syl 16 | . . . . . 6 |
18 | oveq1 6303 | . . . . . . 7 | |
19 | rexr 9660 | . . . . . . . . 9 | |
20 | renemnf 9663 | . . . . . . . . 9 | |
21 | xaddpnf2 11455 | . . . . . . . . 9 | |
22 | 19, 20, 21 | syl2anc 661 | . . . . . . . 8 |
23 | 22 | ad2antrl 727 | . . . . . . 7 |
24 | 18, 23 | sylan9eqr 2520 | . . . . . 6 |
25 | 17, 24 | breqtrrd 4478 | . . . . 5 |
26 | 14 | adantr 465 | . . . . . . . 8 |
27 | xrleid 11385 | . . . . . . . 8 | |
28 | 26, 27 | syl 16 | . . . . . . 7 |
29 | simplr 755 | . . . . . . . . 9 | |
30 | simpr 461 | . . . . . . . . . 10 | |
31 | 11 | adantr 465 | . . . . . . . . . . 11 |
32 | mnfle 11371 | . . . . . . . . . . 11 | |
33 | 31, 32 | syl 16 | . . . . . . . . . 10 |
34 | 30, 33 | eqbrtrd 4472 | . . . . . . . . 9 |
35 | simpl2 1000 | . . . . . . . . . . 11 | |
36 | xrletri3 11387 | . . . . . . . . . . 11 | |
37 | 11, 35, 36 | syl2anc 661 | . . . . . . . . . 10 |
38 | 37 | adantr 465 | . . . . . . . . 9 |
39 | 29, 34, 38 | mpbir2and 922 | . . . . . . . 8 |
40 | 39 | oveq1d 6311 | . . . . . . 7 |
41 | 28, 40 | breqtrd 4476 | . . . . . 6 |
42 | 41 | adantlr 714 | . . . . 5 |
43 | elxr 11354 | . . . . . . 7 | |
44 | 35, 43 | sylib 196 | . . . . . 6 |
45 | 44 | adantr 465 | . . . . 5 |
46 | 10, 25, 42, 45 | mpjao3dan 1295 | . . . 4 |
47 | 46 | anassrs 648 | . . 3 |
48 | 14 | adantr 465 | . . . . . 6 |
49 | 48, 27 | syl 16 | . . . . 5 |
50 | simplr 755 | . . . . . . 7 | |
51 | pnfge 11368 | . . . . . . . . . 10 | |
52 | 35, 51 | syl 16 | . . . . . . . . 9 |
53 | 52 | adantr 465 | . . . . . . . 8 |
54 | simpr 461 | . . . . . . . 8 | |
55 | 53, 54 | breqtrrd 4478 | . . . . . . 7 |
56 | 37 | adantr 465 | . . . . . . 7 |
57 | 50, 55, 56 | mpbir2and 922 | . . . . . 6 |
58 | 57 | oveq1d 6311 | . . . . 5 |
59 | 49, 58 | breqtrd 4476 | . . . 4 |
60 | 59 | adantlr 714 | . . 3 |
61 | oveq1 6303 | . . . . 5 | |
62 | renepnf 9662 | . . . . . . 7 | |
63 | xaddmnf2 11457 | . . . . . . 7 | |
64 | 19, 62, 63 | syl2anc 661 | . . . . . 6 |
65 | 64 | adantl 466 | . . . . 5 |
66 | 61, 65 | sylan9eqr 2520 | . . . 4 |
67 | xaddcl 11465 | . . . . . . 7 | |
68 | 35, 12, 67 | syl2anc 661 | . . . . . 6 |
69 | 68 | ad2antrr 725 | . . . . 5 |
70 | mnfle 11371 | . . . . 5 | |
71 | 69, 70 | syl 16 | . . . 4 |
72 | 66, 71 | eqbrtrd 4472 | . . 3 |
73 | elxr 11354 | . . . . 5 | |
74 | 11, 73 | sylib 196 | . . . 4 |
75 | 74 | adantr 465 | . . 3 |
76 | 47, 60, 72, 75 | mpjao3dan 1295 | . 2 |
77 | 41 | adantlr 714 | . . 3 |
78 | 14 | ad2antrr 725 | . . . . 5 |
79 | 78, 16 | syl 16 | . . . 4 |
80 | simplr 755 | . . . . . 6 | |
81 | 80 | oveq2d 6312 | . . . . 5 |
82 | 35 | adantr 465 | . . . . . 6 |
83 | xaddpnf1 11454 | . . . . . 6 | |
84 | 82, 83 | sylan 471 | . . . . 5 |
85 | 81, 84 | eqtrd 2498 | . . . 4 |
86 | 79, 85 | breqtrrd 4478 | . . 3 |
87 | 77, 86 | pm2.61dane 2775 | . 2 |
88 | 59 | adantlr 714 | . . 3 |
89 | simplr 755 | . . . . . 6 | |
90 | 89 | oveq2d 6312 | . . . . 5 |
91 | 11 | adantr 465 | . . . . . 6 |
92 | xaddmnf1 11456 | . . . . . 6 | |
93 | 91, 92 | sylan 471 | . . . . 5 |
94 | 90, 93 | eqtrd 2498 | . . . 4 |
95 | 68 | ad2antrr 725 | . . . . 5 |
96 | 95, 70 | syl 16 | . . . 4 |
97 | 94, 96 | eqbrtrd 4472 | . . 3 |
98 | 88, 97 | pm2.61dane 2775 | . 2 |
99 | elxr 11354 | . . 3 | |
100 | 12, 99 | sylib 196 | . 2 |
101 | 76, 87, 98, 100 | mpjao3dan 1295 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 \/ w3o 972 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
class class class wbr 4452 (class class class)co 6296
cr 9512 caddc 9516 cpnf 9646 cmnf 9647
cxr 9648
cle 9650 cxad 11345 |
This theorem is referenced by: xleadd2a 11475 xleadd1 11476 xaddge0 11479 xle2add 11480 imasdsf1olem 20876 xblss2ps 20904 xblss2 20905 stdbdxmet 21018 xrge0omnd 27701 measunl 28187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-xadd 11348 |
Copyright terms: Public domain | W3C validator |