![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xlt2add | Unicode version |
Description: Extended real version of
lt2add 10062. Note that ltleadd 10060, which has
weaker assumptions, is not true for the extended reals (since
0 1 fails). (Contributed by Mario
Carneiro,
23-Aug-2015.) |
Ref | Expression |
---|---|
xlt2add |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xaddcl 11465 | . . . . . . . 8 | |
2 | 1 | 3ad2ant1 1017 | . . . . . . 7 |
3 | 2 | adantr 465 | . . . . . 6 |
4 | simp1l 1020 | . . . . . . . 8 | |
5 | simp2r 1023 | . . . . . . . 8 | |
6 | xaddcl 11465 | . . . . . . . 8 | |
7 | 4, 5, 6 | syl2anc 661 | . . . . . . 7 |
8 | 7 | adantr 465 | . . . . . 6 |
9 | xaddcl 11465 | . . . . . . . 8 | |
10 | 9 | 3ad2ant2 1018 | . . . . . . 7 |
11 | 10 | adantr 465 | . . . . . 6 |
12 | simp3r 1025 | . . . . . . . 8 | |
13 | 12 | adantr 465 | . . . . . . 7 |
14 | simp1r 1021 | . . . . . . . . 9 | |
15 | 14 | adantr 465 | . . . . . . . 8 |
16 | 5 | adantr 465 | . . . . . . . 8 |
17 | simprl 756 | . . . . . . . 8 | |
18 | xltadd2 11478 | . . . . . . . 8 | |
19 | 15, 16, 17, 18 | syl3anc 1228 | . . . . . . 7 |
20 | 13, 19 | mpbid 210 | . . . . . 6 |
21 | simp3l 1024 | . . . . . . . 8 | |
22 | 21 | adantr 465 | . . . . . . 7 |
23 | 4 | adantr 465 | . . . . . . . 8 |
24 | simp2l 1022 | . . . . . . . . 9 | |
25 | 24 | adantr 465 | . . . . . . . 8 |
26 | simprr 757 | . . . . . . . 8 | |
27 | xltadd1 11477 | . . . . . . . 8 | |
28 | 23, 25, 26, 27 | syl3anc 1228 | . . . . . . 7 |
29 | 22, 28 | mpbid 210 | . . . . . 6 |
30 | 3, 8, 11, 20, 29 | xrlttrd 11391 | . . . . 5 |
31 | 30 | anassrs 648 | . . . 4 |
32 | pnfxr 11350 | . . . . . . . . . . . 12 | |
33 | 32 | a1i 11 | . . . . . . . . . . 11 |
34 | pnfge 11368 | . . . . . . . . . . . 12 | |
35 | 24, 34 | syl 16 | . . . . . . . . . . 11 |
36 | 4, 24, 33, 21, 35 | xrltletrd 11393 | . . . . . . . . . 10 |
37 | nltpnft 11396 | . . . . . . . . . . . 12 | |
38 | 37 | necon2abid 2711 | . . . . . . . . . . 11 |
39 | 4, 38 | syl 16 | . . . . . . . . . 10 |
40 | 36, 39 | mpbid 210 | . . . . . . . . 9 |
41 | pnfge 11368 | . . . . . . . . . . . 12 | |
42 | 5, 41 | syl 16 | . . . . . . . . . . 11 |
43 | 14, 5, 33, 12, 42 | xrltletrd 11393 | . . . . . . . . . 10 |
44 | nltpnft 11396 | . . . . . . . . . . . 12 | |
45 | 44 | necon2abid 2711 | . . . . . . . . . . 11 |
46 | 14, 45 | syl 16 | . . . . . . . . . 10 |
47 | 43, 46 | mpbid 210 | . . . . . . . . 9 |
48 | xaddnepnf 11463 | . . . . . . . . 9 | |
49 | 4, 40, 14, 47, 48 | syl22anc 1229 | . . . . . . . 8 |
50 | nltpnft 11396 | . . . . . . . . . 10 | |
51 | 50 | necon2abid 2711 | . . . . . . . . 9 |
52 | 2, 51 | syl 16 | . . . . . . . 8 |
53 | 49, 52 | mpbird 232 | . . . . . . 7 |
54 | 53 | adantr 465 | . . . . . 6 |
55 | oveq2 6304 | . . . . . . 7 | |
56 | mnfxr 11352 | . . . . . . . . . . 11 | |
57 | 56 | a1i 11 | . . . . . . . . . 10 |
58 | mnfle 11371 | . . . . . . . . . . 11 | |
59 | 4, 58 | syl 16 | . . . . . . . . . 10 |
60 | 57, 4, 24, 59, 21 | xrlelttrd 11392 | . . . . . . . . 9 |
61 | ngtmnft 11397 | . . . . . . . . . . 11 | |
62 | 61 | necon2abid 2711 | . . . . . . . . . 10 |
63 | 24, 62 | syl 16 | . . . . . . . . 9 |
64 | 60, 63 | mpbid 210 | . . . . . . . 8 |
65 | xaddpnf1 11454 | . . . . . . . 8 | |
66 | 24, 64, 65 | syl2anc 661 | . . . . . . 7 |
67 | 55, 66 | sylan9eqr 2520 | . . . . . 6 |
68 | 54, 67 | breqtrrd 4478 | . . . . 5 |
69 | 68 | adantlr 714 | . . . 4 |
70 | mnfle 11371 | . . . . . . . . . . 11 | |
71 | 14, 70 | syl 16 | . . . . . . . . . 10 |
72 | 57, 14, 5, 71, 12 | xrlelttrd 11392 | . . . . . . . . 9 |
73 | ngtmnft 11397 | . . . . . . . . . . 11 | |
74 | 73 | necon2abid 2711 | . . . . . . . . . 10 |
75 | 5, 74 | syl 16 | . . . . . . . . 9 |
76 | 72, 75 | mpbid 210 | . . . . . . . 8 |
77 | 76 | a1d 25 | . . . . . . 7 |
78 | 77 | necon4bd 2679 | . . . . . 6 |
79 | 78 | imp 429 | . . . . 5 |
80 | 79 | adantlr 714 | . . . 4 |
81 | elxr 11354 | . . . . . 6 | |
82 | 5, 81 | sylib 196 | . . . . 5 |
83 | 82 | adantr 465 | . . . 4 |
84 | 31, 69, 80, 83 | mpjao3dan 1295 | . . 3 |
85 | 40 | a1d 25 | . . . . 5 |
86 | 85 | necon4bd 2679 | . . . 4 |
87 | 86 | imp 429 | . . 3 |
88 | oveq1 6303 | . . . . 5 | |
89 | xaddmnf2 11457 | . . . . . 6 | |
90 | 14, 47, 89 | syl2anc 661 | . . . . 5 |
91 | 88, 90 | sylan9eqr 2520 | . . . 4 |
92 | xaddnemnf 11462 | . . . . . . 7 | |
93 | 24, 64, 5, 76, 92 | syl22anc 1229 | . . . . . 6 |
94 | ngtmnft 11397 | . . . . . . . 8 | |
95 | 94 | necon2abid 2711 | . . . . . . 7 |
96 | 10, 95 | syl 16 | . . . . . 6 |
97 | 93, 96 | mpbird 232 | . . . . 5 |
98 | 97 | adantr 465 | . . . 4 |
99 | 91, 98 | eqbrtrd 4472 | . . 3 |
100 | elxr 11354 | . . . 4 | |
101 | 4, 100 | sylib 196 | . . 3 |
102 | 84, 87, 99, 101 | mpjao3dan 1295 | . 2 |
103 | 102 | 3expia 1198 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 \/ w3o 972
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 class class class wbr 4452
(class class class)co 6296 cr 9512 cpnf 9646 cmnf 9647
cxr 9648
clt 9649 cle 9650 cxad 11345 |
This theorem is referenced by: bldisj 20901 iscau3 21717 xrofsup 27582 xrge0addgt0 27681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-xneg 11347 df-xadd 11348 |
Copyright terms: Public domain | W3C validator |