![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xltnegi | Unicode version |
Description: Forward direction of xltneg 11445. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xltnegi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 11354 | . . 3 | |
2 | elxr 11354 | . . . . . 6 | |
3 | ltneg 10077 | . . . . . . . . 9 | |
4 | rexneg 11439 | . . . . . . . . . 10 | |
5 | rexneg 11439 | . . . . . . . . . 10 | |
6 | 4, 5 | breqan12rd 4468 | . . . . . . . . 9 |
7 | 3, 6 | bitr4d 256 | . . . . . . . 8 |
8 | 7 | biimpd 207 | . . . . . . 7 |
9 | xnegeq 11435 | . . . . . . . . . . 11 | |
10 | xnegpnf 11437 | . . . . . . . . . . 11 | |
11 | 9, 10 | syl6eq 2514 | . . . . . . . . . 10 |
12 | 11 | adantl 466 | . . . . . . . . 9 |
13 | renegcl 9905 | . . . . . . . . . . . 12 | |
14 | 5, 13 | eqeltrd 2545 | . . . . . . . . . . 11 |
15 | mnflt 11362 | . . . . . . . . . . 11 | |
16 | 14, 15 | syl 16 | . . . . . . . . . 10 |
17 | 16 | adantr 465 | . . . . . . . . 9 |
18 | 12, 17 | eqbrtrd 4472 | . . . . . . . 8 |
19 | 18 | a1d 25 | . . . . . . 7 |
20 | simpr 461 | . . . . . . . . 9 | |
21 | 20 | breq2d 4464 | . . . . . . . 8 |
22 | rexr 9660 | . . . . . . . . . . 11 | |
23 | nltmnf 11367 | . . . . . . . . . . 11 | |
24 | 22, 23 | syl 16 | . . . . . . . . . 10 |
25 | 24 | adantr 465 | . . . . . . . . 9 |
26 | 25 | pm2.21d 106 | . . . . . . . 8 |
27 | 21, 26 | sylbid 215 | . . . . . . 7 |
28 | 8, 19, 27 | 3jaodan 1294 | . . . . . 6 |
29 | 2, 28 | sylan2b 475 | . . . . 5 |
30 | 29 | expimpd 603 | . . . 4 |
31 | simpl 457 | . . . . . . 7 | |
32 | 31 | breq1d 4462 | . . . . . 6 |
33 | pnfnlt 11366 | . . . . . . . 8 | |
34 | 33 | adantl 466 | . . . . . . 7 |
35 | 34 | pm2.21d 106 | . . . . . 6 |
36 | 32, 35 | sylbid 215 | . . . . 5 |
37 | 36 | expimpd 603 | . . . 4 |
38 | breq1 4455 | . . . . . 6 | |
39 | 38 | anbi2d 703 | . . . . 5 |
40 | renegcl 9905 | . . . . . . . . . . 11 | |
41 | 4, 40 | eqeltrd 2545 | . . . . . . . . . 10 |
42 | 41 | adantr 465 | . . . . . . . . 9 |
43 | ltpnf 11360 | . . . . . . . . 9 | |
44 | 42, 43 | syl 16 | . . . . . . . 8 |
45 | 11 | adantr 465 | . . . . . . . . 9 |
46 | mnfltpnf 11364 | . . . . . . . . 9 | |
47 | 45, 46 | syl6eqbr 4489 | . . . . . . . 8 |
48 | breq2 4456 | . . . . . . . . . 10 | |
49 | mnfxr 11352 | . . . . . . . . . . . 12 | |
50 | nltmnf 11367 | . . . . . . . . . . . 12 | |
51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 |
52 | 51 | pm2.21i 131 | . . . . . . . . . 10 |
53 | 48, 52 | syl6bi 228 | . . . . . . . . 9 |
54 | 53 | imp 429 | . . . . . . . 8 |
55 | 44, 47, 54 | 3jaoian 1293 | . . . . . . 7 |
56 | 2, 55 | sylanb 472 | . . . . . 6 |
57 | xnegeq 11435 | . . . . . . . 8 | |
58 | xnegmnf 11438 | . . . . . . . 8 | |
59 | 57, 58 | syl6eq 2514 | . . . . . . 7 |
60 | 59 | breq2d 4464 | . . . . . 6 |
61 | 56, 60 | syl5ibr 221 | . . . . 5 |
62 | 39, 61 | sylbid 215 | . . . 4 |
63 | 30, 37, 62 | 3jaoi 1291 | . . 3 |
64 | 1, 63 | sylbi 195 | . 2 |
65 | 64 | 3impib 1194 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 \/ w3o 972 /\ w3a 973
= wceq 1395 e. wcel 1818 class class class wbr 4452
cr 9512 cpnf 9646 cmnf 9647
cxr 9648
clt 9649 -u cneg 9829 cxne 11344 |
This theorem is referenced by: xltneg 11445 xrsdsreclblem 18464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-xneg 11347 |
Copyright terms: Public domain | W3C validator |