![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xmulasslem | Unicode version |
Description: Lemma for xmulass 11508. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulasslem.1 | |
xmulasslem.2 | |
xmulasslem.x | |
xmulasslem.y | |
xmulasslem.d | |
xmulasslem.ps | |
xmulasslem.0 | |
xmulasslem.e | |
xmulasslem.f |
Ref | Expression |
---|---|
xmulasslem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmulasslem.d | . . 3 | |
2 | 0xr 9661 | . . 3 | |
3 | xrltso 11376 | . . . 4 | |
4 | solin 4828 | . . . 4 | |
5 | 3, 4 | mpan 670 | . . 3 |
6 | 1, 2, 5 | sylancl 662 | . 2 |
7 | xlt0neg1 11447 | . . . . . 6 | |
8 | 1, 7 | syl 16 | . . . . 5 |
9 | xnegcl 11441 | . . . . . . 7 | |
10 | 1, 9 | syl 16 | . . . . . 6 |
11 | breq2 4456 | . . . . . . . . 9 | |
12 | xmulasslem.2 | . . . . . . . . 9 | |
13 | 11, 12 | imbi12d 320 | . . . . . . . 8 |
14 | 13 | imbi2d 316 | . . . . . . 7 |
15 | xmulasslem.ps | . . . . . . . . 9 | |
16 | 15 | exp32 605 | . . . . . . . 8 |
17 | 16 | com12 31 | . . . . . . 7 |
18 | 14, 17 | vtoclga 3173 | . . . . . 6 |
19 | 10, 18 | mpcom 36 | . . . . 5 |
20 | 8, 19 | sylbid 215 | . . . 4 |
21 | xmulasslem.e | . . . . . 6 | |
22 | xmulasslem.f | . . . . . 6 | |
23 | 21, 22 | eqeq12d 2479 | . . . . 5 |
24 | xmulasslem.x | . . . . . 6 | |
25 | xmulasslem.y | . . . . . 6 | |
26 | xneg11 11443 | . . . . . 6 | |
27 | 24, 25, 26 | syl2anc 661 | . . . . 5 |
28 | 23, 27 | bitrd 253 | . . . 4 |
29 | 20, 28 | sylibd 214 | . . 3 |
30 | eqeq1 2461 | . . . . . . 7 | |
31 | xmulasslem.1 | . . . . . . 7 | |
32 | 30, 31 | imbi12d 320 | . . . . . 6 |
33 | 32 | imbi2d 316 | . . . . 5 |
34 | xmulasslem.0 | . . . . 5 | |
35 | 33, 34 | vtoclg 3167 | . . . 4 |
36 | 1, 35 | mpcom 36 | . . 3 |
37 | breq2 4456 | . . . . . . 7 | |
38 | 37, 31 | imbi12d 320 | . . . . . 6 |
39 | 38 | imbi2d 316 | . . . . 5 |
40 | 39, 17 | vtoclga 3173 | . . . 4 |
41 | 1, 40 | mpcom 36 | . . 3 |
42 | 29, 36, 41 | 3jaod 1292 | . 2 |
43 | 6, 42 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 \/ w3o 972 = wceq 1395
e. wcel 1818 class class class wbr 4452
Or wor 4804 0 cc0 9513 cxr 9648
clt 9649 cxne 11344 |
This theorem is referenced by: xmulass 11508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-xneg 11347 |
Copyright terms: Public domain | W3C validator |