![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xmulasslem3 | Unicode version |
Description: Lemma for xmulass 11508. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulasslem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 9603 | . . . . . . . . . 10 | |
2 | recn 9603 | . . . . . . . . . 10 | |
3 | recn 9603 | . . . . . . . . . 10 | |
4 | mulass 9601 | . . . . . . . . . 10 | |
5 | 1, 2, 3, 4 | syl3an 1270 | . . . . . . . . 9 |
6 | 5 | 3expa 1196 | . . . . . . . 8 |
7 | remulcl 9598 | . . . . . . . . 9 | |
8 | rexmul 11492 | . . . . . . . . 9 | |
9 | 7, 8 | sylan 471 | . . . . . . . 8 |
10 | remulcl 9598 | . . . . . . . . . 10 | |
11 | rexmul 11492 | . . . . . . . . . 10 | |
12 | 10, 11 | sylan2 474 | . . . . . . . . 9 |
13 | 12 | anassrs 648 | . . . . . . . 8 |
14 | 6, 9, 13 | 3eqtr4d 2508 | . . . . . . 7 |
15 | rexmul 11492 | . . . . . . . . 9 | |
16 | 15 | adantr 465 | . . . . . . . 8 |
17 | 16 | oveq1d 6311 | . . . . . . 7 |
18 | rexmul 11492 | . . . . . . . . 9 | |
19 | 18 | adantll 713 | . . . . . . . 8 |
20 | 19 | oveq2d 6312 | . . . . . . 7 |
21 | 14, 17, 20 | 3eqtr4d 2508 | . . . . . 6 |
22 | 21 | adantll 713 | . . . . 5 |
23 | oveq2 6304 | . . . . . . . . 9 | |
24 | simp1l 1020 | . . . . . . . . . . 11 | |
25 | simp2l 1022 | . . . . . . . . . . 11 | |
26 | xmulcl 11494 | . . . . . . . . . . 11 | |
27 | 24, 25, 26 | syl2anc 661 | . . . . . . . . . 10 |
28 | xmulgt0 11504 | . . . . . . . . . . 11 | |
29 | 28 | 3adant3 1016 | . . . . . . . . . 10 |
30 | xmulpnf1 11495 | . . . . . . . . . 10 | |
31 | 27, 29, 30 | syl2anc 661 | . . . . . . . . 9 |
32 | 23, 31 | sylan9eqr 2520 | . . . . . . . 8 |
33 | simpl1 999 | . . . . . . . . 9 | |
34 | xmulpnf1 11495 | . . . . . . . . 9 | |
35 | 33, 34 | syl 16 | . . . . . . . 8 |
36 | 32, 35 | eqtr4d 2501 | . . . . . . 7 |
37 | oveq2 6304 | . . . . . . . . 9 | |
38 | xmulpnf1 11495 | . . . . . . . . . 10 | |
39 | 38 | 3ad2ant2 1018 | . . . . . . . . 9 |
40 | 37, 39 | sylan9eqr 2520 | . . . . . . . 8 |
41 | 40 | oveq2d 6312 | . . . . . . 7 |
42 | 36, 41 | eqtr4d 2501 | . . . . . 6 |
43 | 42 | adantlr 714 | . . . . 5 |
44 | simpl3r 1052 | . . . . . 6 | |
45 | xmulasslem2 11503 | . . . . . 6 | |
46 | 44, 45 | sylan 471 | . . . . 5 |
47 | simp3l 1024 | . . . . . . 7 | |
48 | elxr 11354 | . . . . . . 7 | |
49 | 47, 48 | sylib 196 | . . . . . 6 |
50 | 49 | adantr 465 | . . . . 5 |
51 | 22, 43, 46, 50 | mpjao3dan 1295 | . . . 4 |
52 | 51 | anassrs 648 | . . 3 |
53 | xmulpnf2 11496 | . . . . . . . 8 | |
54 | 53 | 3ad2ant3 1019 | . . . . . . 7 |
55 | 34 | 3ad2ant1 1017 | . . . . . . 7 |
56 | 54, 55 | eqtr4d 2501 | . . . . . 6 |
57 | 56 | adantr 465 | . . . . 5 |
58 | oveq2 6304 | . . . . . . 7 | |
59 | 58, 55 | sylan9eqr 2520 | . . . . . 6 |
60 | 59 | oveq1d 6311 | . . . . 5 |
61 | oveq1 6303 | . . . . . . 7 | |
62 | 61, 54 | sylan9eqr 2520 | . . . . . 6 |
63 | 62 | oveq2d 6312 | . . . . 5 |
64 | 57, 60, 63 | 3eqtr4d 2508 | . . . 4 |
65 | 64 | adantlr 714 | . . 3 |
66 | simpl2r 1050 | . . . 4 | |
67 | xmulasslem2 11503 | . . . 4 | |
68 | 66, 67 | sylan 471 | . . 3 |
69 | elxr 11354 | . . . . 5 | |
70 | 25, 69 | sylib 196 | . . . 4 |
71 | 70 | adantr 465 | . . 3 |
72 | 52, 65, 68, 71 | mpjao3dan 1295 | . 2 |
73 | simpl3 1001 | . . . 4 | |
74 | 73, 53 | syl 16 | . . 3 |
75 | oveq1 6303 | . . . . 5 | |
76 | xmulpnf2 11496 | . . . . . 6 | |
77 | 76 | 3ad2ant2 1018 | . . . . 5 |
78 | 75, 77 | sylan9eqr 2520 | . . . 4 |
79 | 78 | oveq1d 6311 | . . 3 |
80 | oveq1 6303 | . . . 4 | |
81 | xmulcl 11494 | . . . . . 6 | |
82 | 25, 47, 81 | syl2anc 661 | . . . . 5 |
83 | xmulgt0 11504 | . . . . . 6 | |
84 | 83 | 3adant1 1014 | . . . . 5 |
85 | xmulpnf2 11496 | . . . . 5 | |
86 | 82, 84, 85 | syl2anc 661 | . . . 4 |
87 | 80, 86 | sylan9eqr 2520 | . . 3 |
88 | 74, 79, 87 | 3eqtr4d 2508 | . 2 |
89 | simp1r 1021 | . . 3 | |
90 | xmulasslem2 11503 | . . 3 | |
91 | 89, 90 | sylan 471 | . 2 |
92 | elxr 11354 | . . 3 | |
93 | 24, 92 | sylib 196 | . 2 |
94 | 72, 88, 91, 93 | mpjao3dan 1295 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
\/ w3o 972 /\ w3a 973 = wceq 1395
e. wcel 1818 class class class wbr 4452
(class class class)co 6296 cc 9511 cr 9512 0 cc0 9513 cmul 9518 cpnf 9646 cmnf 9647
cxr 9648
clt 9649 cxmu 11346 |
This theorem is referenced by: xmulass 11508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-xmul 11349 |
Copyright terms: Public domain | W3C validator |