![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xmulval | Unicode version |
Description: Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . . 5 | |
2 | 1 | eqeq1d 2459 | . . . 4 |
3 | simpr 461 | . . . . 5 | |
4 | 3 | eqeq1d 2459 | . . . 4 |
5 | 2, 4 | orbi12d 709 | . . 3 |
6 | 3 | breq2d 4464 | . . . . . . 7 |
7 | 1 | eqeq1d 2459 | . . . . . . 7 |
8 | 6, 7 | anbi12d 710 | . . . . . 6 |
9 | 3 | breq1d 4462 | . . . . . . 7 |
10 | 1 | eqeq1d 2459 | . . . . . . 7 |
11 | 9, 10 | anbi12d 710 | . . . . . 6 |
12 | 8, 11 | orbi12d 709 | . . . . 5 |
13 | 1 | breq2d 4464 | . . . . . . 7 |
14 | 3 | eqeq1d 2459 | . . . . . . 7 |
15 | 13, 14 | anbi12d 710 | . . . . . 6 |
16 | 1 | breq1d 4462 | . . . . . . 7 |
17 | 3 | eqeq1d 2459 | . . . . . . 7 |
18 | 16, 17 | anbi12d 710 | . . . . . 6 |
19 | 15, 18 | orbi12d 709 | . . . . 5 |
20 | 12, 19 | orbi12d 709 | . . . 4 |
21 | 6, 10 | anbi12d 710 | . . . . . . 7 |
22 | 9, 7 | anbi12d 710 | . . . . . . 7 |
23 | 21, 22 | orbi12d 709 | . . . . . 6 |
24 | 13, 17 | anbi12d 710 | . . . . . . 7 |
25 | 16, 14 | anbi12d 710 | . . . . . . 7 |
26 | 24, 25 | orbi12d 709 | . . . . . 6 |
27 | 23, 26 | orbi12d 709 | . . . . 5 |
28 | oveq12 6305 | . . . . 5 | |
29 | 27, 28 | ifbieq2d 3966 | . . . 4 |
30 | 20, 29 | ifbieq2d 3966 | . . 3 |
31 | 5, 30 | ifbieq2d 3966 | . 2 |
32 | df-xmul 11349 | . 2 | |
33 | c0ex 9611 | . . 3 | |
34 | pnfex 11351 | . . . 4 | |
35 | mnfxr 11352 | . . . . . 6 | |
36 | 35 | elexi 3119 | . . . . 5 |
37 | ovex 6324 | . . . . 5 | |
38 | 36, 37 | ifex 4010 | . . . 4 |
39 | 34, 38 | ifex 4010 | . . 3 |
40 | 33, 39 | ifex 4010 | . 2 |
41 | 31, 32, 40 | ovmpt2a 6433 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
if cif 3941 class class class wbr 4452
(class class class)co 6296 0 cc0 9513
cmul 9518 cpnf 9646 cmnf 9647
cxr 9648
clt 9649 cxmu 11346 |
This theorem is referenced by: xmulcom 11487 xmul01 11488 xmulneg1 11490 rexmul 11492 xmulpnf1 11495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-mulcl 9575 ax-i2m1 9581 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-pnf 9651 df-mnf 9652 df-xr 9653 df-xmul 11349 |
Copyright terms: Public domain | W3C validator |