![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xnegdi | Unicode version |
Description: Extended real version of xnegdi 11469. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 11354 | . 2 | |
2 | elxr 11354 | . . . 4 | |
3 | recn 9603 | . . . . . . . 8 | |
4 | recn 9603 | . . . . . . . 8 | |
5 | negdi 9899 | . . . . . . . 8 | |
6 | 3, 4, 5 | syl2an 477 | . . . . . . 7 |
7 | readdcl 9596 | . . . . . . . 8 | |
8 | rexneg 11439 | . . . . . . . 8 | |
9 | 7, 8 | syl 16 | . . . . . . 7 |
10 | renegcl 9905 | . . . . . . . 8 | |
11 | renegcl 9905 | . . . . . . . 8 | |
12 | rexadd 11460 | . . . . . . . 8 | |
13 | 10, 11, 12 | syl2an 477 | . . . . . . 7 |
14 | 6, 9, 13 | 3eqtr4d 2508 | . . . . . 6 |
15 | rexadd 11460 | . . . . . . 7 | |
16 | xnegeq 11435 | . . . . . . 7 | |
17 | 15, 16 | syl 16 | . . . . . 6 |
18 | rexneg 11439 | . . . . . . 7 | |
19 | rexneg 11439 | . . . . . . 7 | |
20 | 18, 19 | oveqan12d 6315 | . . . . . 6 |
21 | 14, 17, 20 | 3eqtr4d 2508 | . . . . 5 |
22 | xnegpnf 11437 | . . . . . 6 | |
23 | oveq2 6304 | . . . . . . . 8 | |
24 | rexr 9660 | . . . . . . . . 9 | |
25 | renemnf 9663 | . . . . . . . . 9 | |
26 | xaddpnf1 11454 | . . . . . . . . 9 | |
27 | 24, 25, 26 | syl2anc 661 | . . . . . . . 8 |
28 | 23, 27 | sylan9eqr 2520 | . . . . . . 7 |
29 | xnegeq 11435 | . . . . . . 7 | |
30 | 28, 29 | syl 16 | . . . . . 6 |
31 | xnegeq 11435 | . . . . . . . . 9 | |
32 | 31, 22 | syl6eq 2514 | . . . . . . . 8 |
33 | 32 | oveq2d 6312 | . . . . . . 7 |
34 | 18, 10 | eqeltrd 2545 | . . . . . . . 8 |
35 | rexr 9660 | . . . . . . . . 9 | |
36 | renepnf 9662 | . . . . . . . . 9 | |
37 | xaddmnf1 11456 | . . . . . . . . 9 | |
38 | 35, 36, 37 | syl2anc 661 | . . . . . . . 8 |
39 | 34, 38 | syl 16 | . . . . . . 7 |
40 | 33, 39 | sylan9eqr 2520 | . . . . . 6 |
41 | 22, 30, 40 | 3eqtr4a 2524 | . . . . 5 |
42 | xnegmnf 11438 | . . . . . 6 | |
43 | oveq2 6304 | . . . . . . . 8 | |
44 | renepnf 9662 | . . . . . . . . 9 | |
45 | xaddmnf1 11456 | . . . . . . . . 9 | |
46 | 24, 44, 45 | syl2anc 661 | . . . . . . . 8 |
47 | 43, 46 | sylan9eqr 2520 | . . . . . . 7 |
48 | xnegeq 11435 | . . . . . . 7 | |
49 | 47, 48 | syl 16 | . . . . . 6 |
50 | xnegeq 11435 | . . . . . . . . 9 | |
51 | 50, 42 | syl6eq 2514 | . . . . . . . 8 |
52 | 51 | oveq2d 6312 | . . . . . . 7 |
53 | renemnf 9663 | . . . . . . . . 9 | |
54 | xaddpnf1 11454 | . . . . . . . . 9 | |
55 | 35, 53, 54 | syl2anc 661 | . . . . . . . 8 |
56 | 34, 55 | syl 16 | . . . . . . 7 |
57 | 52, 56 | sylan9eqr 2520 | . . . . . 6 |
58 | 42, 49, 57 | 3eqtr4a 2524 | . . . . 5 |
59 | 21, 41, 58 | 3jaodan 1294 | . . . 4 |
60 | 2, 59 | sylan2b 475 | . . 3 |
61 | xneg0 11440 | . . . . . . 7 | |
62 | simpr 461 | . . . . . . . . . 10 | |
63 | 62 | oveq2d 6312 | . . . . . . . . 9 |
64 | pnfaddmnf 11458 | . . . . . . . . 9 | |
65 | 63, 64 | syl6eq 2514 | . . . . . . . 8 |
66 | xnegeq 11435 | . . . . . . . 8 | |
67 | 65, 66 | syl 16 | . . . . . . 7 |
68 | 51 | adantl 466 | . . . . . . . . 9 |
69 | 68 | oveq2d 6312 | . . . . . . . 8 |
70 | mnfaddpnf 11459 | . . . . . . . 8 | |
71 | 69, 70 | syl6eq 2514 | . . . . . . 7 |
72 | 61, 67, 71 | 3eqtr4a 2524 | . . . . . 6 |
73 | xaddpnf2 11455 | . . . . . . . 8 | |
74 | xnegeq 11435 | . . . . . . . 8 | |
75 | 73, 74 | syl 16 | . . . . . . 7 |
76 | xnegcl 11441 | . . . . . . . . 9 | |
77 | 76 | adantr 465 | . . . . . . . 8 |
78 | xnegeq 11435 | . . . . . . . . . . . 12 | |
79 | 78, 22 | syl6eq 2514 | . . . . . . . . . . 11 |
80 | xnegneg 11442 | . . . . . . . . . . . 12 | |
81 | 80 | eqeq1d 2459 | . . . . . . . . . . 11 |
82 | 79, 81 | syl5ib 219 | . . . . . . . . . 10 |
83 | 82 | necon3d 2681 | . . . . . . . . 9 |
84 | 83 | imp 429 | . . . . . . . 8 |
85 | xaddmnf2 11457 | . . . . . . . 8 | |
86 | 77, 84, 85 | syl2anc 661 | . . . . . . 7 |
87 | 22, 75, 86 | 3eqtr4a 2524 | . . . . . 6 |
88 | 72, 87 | pm2.61dane 2775 | . . . . 5 |
89 | 88 | adantl 466 | . . . 4 |
90 | simpl 457 | . . . . . 6 | |
91 | 90 | oveq1d 6311 | . . . . 5 |
92 | xnegeq 11435 | . . . . 5 | |
93 | 91, 92 | syl 16 | . . . 4 |
94 | xnegeq 11435 | . . . . . . 7 | |
95 | 94 | adantr 465 | . . . . . 6 |
96 | 95, 22 | syl6eq 2514 | . . . . 5 |
97 | 96 | oveq1d 6311 | . . . 4 |
98 | 89, 93, 97 | 3eqtr4d 2508 | . . 3 |
99 | simpr 461 | . . . . . . . . . 10 | |
100 | 99 | oveq2d 6312 | . . . . . . . . 9 |
101 | 100, 70 | syl6eq 2514 | . . . . . . . 8 |
102 | xnegeq 11435 | . . . . . . . 8 | |
103 | 101, 102 | syl 16 | . . . . . . 7 |
104 | 32 | adantl 466 | . . . . . . . . 9 |
105 | 104 | oveq2d 6312 | . . . . . . . 8 |
106 | 105, 64 | syl6eq 2514 | . . . . . . 7 |
107 | 61, 103, 106 | 3eqtr4a 2524 | . . . . . 6 |
108 | xaddmnf2 11457 | . . . . . . . 8 | |
109 | xnegeq 11435 | . . . . . . . 8 | |
110 | 108, 109 | syl 16 | . . . . . . 7 |
111 | 76 | adantr 465 | . . . . . . . 8 |
112 | xnegeq 11435 | . . . . . . . . . . . 12 | |
113 | 112, 42 | syl6eq 2514 | . . . . . . . . . . 11 |
114 | 80 | eqeq1d 2459 | . . . . . . . . . . 11 |
115 | 113, 114 | syl5ib 219 | . . . . . . . . . 10 |
116 | 115 | necon3d 2681 | . . . . . . . . 9 |
117 | 116 | imp 429 | . . . . . . . 8 |
118 | xaddpnf2 11455 | . . . . . . . 8 | |
119 | 111, 117, 118 | syl2anc 661 | . . . . . . 7 |
120 | 42, 110, 119 | 3eqtr4a 2524 | . . . . . 6 |
121 | 107, 120 | pm2.61dane 2775 | . . . . 5 |
122 | 121 | adantl 466 | . . . 4 |
123 | simpl 457 | . . . . . 6 | |
124 | 123 | oveq1d 6311 | . . . . 5 |
125 | xnegeq 11435 | . . . . 5 | |
126 | 124, 125 | syl 16 | . . . 4 |
127 | xnegeq 11435 | . . . . . . 7 | |
128 | 127 | adantr 465 | . . . . . 6 |
129 | 128, 42 | syl6eq 2514 | . . . . 5 |
130 | 129 | oveq1d 6311 | . . . 4 |
131 | 122, 126, 130 | 3eqtr4d 2508 | . . 3 |
132 | 60, 98, 131 | 3jaoian 1293 | . 2 |
133 | 1, 132 | sylanb 472 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
\/ w3o 972 = wceq 1395 e. wcel 1818
=/= wne 2652 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 caddc 9516 cpnf 9646 cmnf 9647
cxr 9648
-u cneg 9829 cxne 11344 cxad 11345 |
This theorem is referenced by: xaddass2 11471 xposdif 11483 xadddi 11516 xrsxmet 21314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-sub 9830 df-neg 9831 df-xneg 11347 df-xadd 11348 |
Copyright terms: Public domain | W3C validator |