MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegeq Unicode version

Theorem xnegeq 11435
Description: Equality of two extended numbers with in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegeq

Proof of Theorem xnegeq
StepHypRef Expression
1 eqeq1 2461 . . 3
2 eqeq1 2461 . . . 4
3 negeq 9835 . . . 4
42, 3ifbieq2d 3966 . . 3
51, 4ifbieq2d 3966 . 2
6 df-xneg 11347 . 2
7 df-xneg 11347 . 2
85, 6, 73eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  ifcif 3941   cpnf 9646   cmnf 9647  -ucneg 9829   cxne 11344
This theorem is referenced by:  xnegcl  11441  xnegneg  11442  xneg11  11443  xltnegi  11444  xnegid  11464  xnegdi  11469  xsubge0  11482  xlesubadd  11484  xmulneg1  11490  xmulneg2  11491  xmulmnf1  11497  xmulm1  11502  xrsdsval  18462  xrsdsreclblem  18464  xblss2ps  20904  xblss2  20905  xrhmeo  21446  xaddeq0  27573  xrsmulgzz  27666  xrge0npcan  27684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6299  df-neg 9831  df-xneg 11347
  Copyright terms: Public domain W3C validator