MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegpnf Unicode version

Theorem xnegpnf 11437
Description: Minus . Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 11347 . 2
2 eqid 2457 . . 3
32iftruei 3948 . 2
41, 3eqtri 2486 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  ifcif 3941   cpnf 9646   cmnf 9647  -ucneg 9829   cxne 11344
This theorem is referenced by:  xnegcl  11441  xnegneg  11442  xltnegi  11444  xnegid  11464  xnegdi  11469  xaddass2  11471  xsubge0  11482  xlesubadd  11484  xmulneg1  11490  xmulmnf1  11497  xadddi2  11518  xrsdsreclblem  18464  xblss2ps  20904  xblss2  20905  xaddeq0  27573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-if 3942  df-xneg 11347
  Copyright terms: Public domain W3C validator