MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnor Unicode version

Theorem xnor 1365
Description: Two ways to write XNOR. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xnor

Proof of Theorem xnor
StepHypRef Expression
1 df-xor 1364 . 2
21con2bii 332 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/_wxo 1363
This theorem is referenced by:  xorneg1  1373  hadbi  1454  tsxo1  30544  tsxo2  30545  elsymdifxor  33217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-xor 1364
  Copyright terms: Public domain W3C validator