![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xorcom | Unicode version |
Description: \/_ is commutative. (Contributed by Mario Carneiro,
4-Sep-2016.) |
Ref | Expression |
---|---|
xorcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 200 | . . 3 | |
2 | 1 | notbii 296 | . 2 |
3 | df-xor 1364 | . 2 | |
4 | df-xor 1364 | . 2 | |
5 | 2, 3, 4 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
\/_ wxo 1363 |
This theorem is referenced by: xorneg2 1374 hadcoma 1455 hadcomb 1456 cadcoma 1462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-xor 1364 |
Copyright terms: Public domain | W3C validator |