MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xorcom Unicode version

Theorem xorcom 1366
Description: \/_ is commutative. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xorcom

Proof of Theorem xorcom
StepHypRef Expression
1 bicom 200 . . 3
21notbii 296 . 2
3 df-xor 1364 . 2
4 df-xor 1364 . 2
52, 3, 43bitr4i 277 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/_wxo 1363
This theorem is referenced by:  xorneg2  1374  hadcoma  1455  hadcomb  1456  cadcoma  1462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-xor 1364
  Copyright terms: Public domain W3C validator