![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xp11 | Unicode version |
Description: The Cartesian product of nonempty classes is one-to-one. (Contributed by NM, 31-May-2008.) |
Ref | Expression |
---|---|
xp11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 5431 | . . 3 | |
2 | anidm 644 | . . . . . 6 | |
3 | neeq1 2738 | . . . . . . 7 | |
4 | 3 | anbi2d 703 | . . . . . 6 |
5 | 2, 4 | syl5bbr 259 | . . . . 5 |
6 | eqimss 3555 | . . . . . . . 8 | |
7 | ssxpb 5446 | . . . . . . . 8 | |
8 | 6, 7 | syl5ibcom 220 | . . . . . . 7 |
9 | eqimss2 3556 | . . . . . . . 8 | |
10 | ssxpb 5446 | . . . . . . . 8 | |
11 | 9, 10 | syl5ibcom 220 | . . . . . . 7 |
12 | 8, 11 | anim12d 563 | . . . . . 6 |
13 | an4 824 | . . . . . . 7 | |
14 | eqss 3518 | . . . . . . . 8 | |
15 | eqss 3518 | . . . . . . . 8 | |
16 | 14, 15 | anbi12i 697 | . . . . . . 7 |
17 | 13, 16 | bitr4i 252 | . . . . . 6 |
18 | 12, 17 | syl6ib 226 | . . . . 5 |
19 | 5, 18 | sylbid 215 | . . . 4 |
20 | 19 | com12 31 | . . 3 |
21 | 1, 20 | sylbi 195 | . 2 |
22 | xpeq12 5023 | . 2 | |
23 | 21, 22 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 =/= wne 2652
C_ wss 3475 c0 3784 X. cxp 5002 |
This theorem is referenced by: xpcan 5448 xpcan2 5449 fseqdom 8428 axcc2lem 8837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 |
Copyright terms: Public domain | W3C validator |