![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpco | Unicode version |
Description: Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
Ref | Expression |
---|---|
xpco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3794 | . . . . . 6 | |
2 | 1 | biimpi 194 | . . . . 5 |
3 | 2 | biantrurd 508 | . . . 4 |
4 | ancom 450 | . . . . . . . 8 | |
5 | 4 | anbi1i 695 | . . . . . . 7 |
6 | brxp 5035 | . . . . . . . 8 | |
7 | brxp 5035 | . . . . . . . 8 | |
8 | 6, 7 | anbi12i 697 | . . . . . . 7 |
9 | anandi 828 | . . . . . . 7 | |
10 | 5, 8, 9 | 3bitr4i 277 | . . . . . 6 |
11 | 10 | exbii 1667 | . . . . 5 |
12 | 19.41v 1771 | . . . . 5 | |
13 | 11, 12 | bitr2i 250 | . . . 4 |
14 | 3, 13 | syl6rbb 262 | . . 3 |
15 | 14 | opabbidv 4515 | . 2 |
16 | df-co 5013 | . 2 | |
17 | df-xp 5010 | . 2 | |
18 | 15, 16, 17 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
=/= wne 2652 c0 3784 class class class wbr 4452
{ copab 4509 X. cxp 5002
o. ccom 5008 |
This theorem is referenced by: xpcoid 5553 ustund 20724 ustneism 20726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-co 5013 |
Copyright terms: Public domain | W3C validator |