![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpexgALT | Unicode version |
Description: Alternate proof of xpexg 6602 requiring Replacement (ax-rep 4563) but not Power Set (ax-pow 4630). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xpexgALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunid 4385 | . . . 4 | |
2 | 1 | xpeq2i 5025 | . . 3 |
3 | xpiundi 5059 | . . 3 | |
4 | 2, 3 | eqtr3i 2488 | . 2 |
5 | id 22 | . . 3 | |
6 | fconstmpt 5048 | . . . . 5 | |
7 | mptexg 6142 | . . . . 5 | |
8 | 6, 7 | syl5eqel 2549 | . . . 4 |
9 | 8 | ralrimivw 2872 | . . 3 |
10 | iunexg 6776 | . . 3 | |
11 | 5, 9, 10 | syl2anr 478 | . 2 |
12 | 4, 11 | syl5eqel 2549 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 A. wral 2807 cvv 3109
{ csn 4029 U_ ciun 4330 e. cmpt 4510
X. cxp 5002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 |
Copyright terms: Public domain | W3C validator |