![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpexr | Unicode version |
Description: If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpexr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4582 | . . . . . 6 | |
2 | eleq1 2529 | . . . . . 6 | |
3 | 1, 2 | mpbiri 233 | . . . . 5 |
4 | 3 | pm2.24d 143 | . . . 4 |
5 | 4 | a1d 25 | . . 3 |
6 | rnexg 6732 | . . . . 5 | |
7 | rnxp 5442 | . . . . . 6 | |
8 | 7 | eleq1d 2526 | . . . . 5 |
9 | 6, 8 | syl5ib 219 | . . . 4 |
10 | 9 | a1dd 46 | . . 3 |
11 | 5, 10 | pm2.61ine 2770 | . 2 |
12 | 11 | orrd 378 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 = wceq 1395 e. wcel 1818
=/= wne 2652 cvv 3109
c0 3784 X. cxp 5002 ran crn 5005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 |
Copyright terms: Public domain | W3C validator |