![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpid11 | Unicode version |
Description: The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
xpid11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5208 | . . 3 | |
2 | dmxpid 5227 | . . 3 | |
3 | dmxpid 5227 | . . 3 | |
4 | 1, 2, 3 | 3eqtr3g 2521 | . 2 |
5 | xpeq12 5023 | . . 3 | |
6 | 5 | anidms 645 | . 2 |
7 | 4, 6 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
X. cxp 5002 dom cdm 5004 |
This theorem is referenced by: intopsn 15882 grporn 25214 resgrprn 25282 ismndo2 25347 rngomndo 25423 rngosn3 25428 ghomgrp 29030 ghomfo 29031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-dm 5014 |
Copyright terms: Public domain | W3C validator |