![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpider | Unicode version |
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
xpider |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5115 | . 2 | |
2 | dmxpid 5227 | . 2 | |
3 | cnvxp 5429 | . . 3 | |
4 | xpidtr 5394 | . . 3 | |
5 | uneq1 3650 | . . . 4 | |
6 | unss2 3674 | . . . 4 | |
7 | unidm 3646 | . . . . 5 | |
8 | eqtr 2483 | . . . . . 6 | |
9 | sseq2 3525 | . . . . . . 7 | |
10 | 9 | biimpd 207 | . . . . . 6 |
11 | 8, 10 | syl 16 | . . . . 5 |
12 | 7, 11 | mpan2 671 | . . . 4 |
13 | 5, 6, 12 | syl2im 38 | . . 3 |
14 | 3, 4, 13 | mp2 9 | . 2 |
15 | df-er 7330 | . 2 | |
16 | 1, 2, 14, 15 | mpbir3an 1178 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 u. cun 3473 C_ wss 3475
X. cxp 5002 `' ccnv 5003 dom cdm 5004
o. ccom 5008 Rel wrel 5009 Er wer 7327 |
This theorem is referenced by: riiner 7403 efglem 16734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-er 7330 |
Copyright terms: Public domain | W3C validator |