![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpiindi | Unicode version |
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
xpiindi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5115 | . . . . . 6 | |
2 | 1 | rgenw 2818 | . . . . 5 |
3 | r19.2z 3918 | . . . . 5 | |
4 | 2, 3 | mpan2 671 | . . . 4 |
5 | reliin 5129 | . . . 4 | |
6 | 4, 5 | syl 16 | . . 3 |
7 | relxp 5115 | . . 3 | |
8 | 6, 7 | jctil 537 | . 2 |
9 | r19.28zv 3924 | . . . . . 6 | |
10 | 9 | bicomd 201 | . . . . 5 |
11 | vex 3112 | . . . . . . 7 | |
12 | eliin 4336 | . . . . . . 7 | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 |
14 | 13 | anbi2i 694 | . . . . 5 |
15 | opelxp 5034 | . . . . . 6 | |
16 | 15 | ralbii 2888 | . . . . 5 |
17 | 10, 14, 16 | 3bitr4g 288 | . . . 4 |
18 | opelxp 5034 | . . . 4 | |
19 | opex 4716 | . . . . 5 | |
20 | eliin 4336 | . . . . 5 | |
21 | 19, 20 | ax-mp 5 | . . . 4 |
22 | 17, 18, 21 | 3bitr4g 288 | . . 3 |
23 | 22 | eqrelrdv2 5107 | . 2 |
24 | 8, 23 | mpancom 669 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
cvv 3109
c0 3784 <. cop 4035 |^|_ ciin 4331
X. cxp 5002 Rel wrel 5009 |
This theorem is referenced by: xpriindi 5144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iin 4333 df-opab 4511 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |