![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpima | Unicode version |
Description: The image by a constant function (or other Cartesian product). (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
xpima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 415 | . . 3 | |
2 | df-ima 5017 | . . . . . . . 8 | |
3 | df-res 5016 | . . . . . . . . 9 | |
4 | 3 | rneqi 5234 | . . . . . . . 8 |
5 | 2, 4 | eqtri 2486 | . . . . . . 7 |
6 | inxp 5140 | . . . . . . . 8 | |
7 | 6 | rneqi 5234 | . . . . . . 7 |
8 | inv1 3812 | . . . . . . . . 9 | |
9 | 8 | xpeq2i 5025 | . . . . . . . 8 |
10 | 9 | rneqi 5234 | . . . . . . 7 |
11 | 5, 7, 10 | 3eqtri 2490 | . . . . . 6 |
12 | xpeq1 5018 | . . . . . . . . 9 | |
13 | 0xp 5085 | . . . . . . . . 9 | |
14 | 12, 13 | syl6eq 2514 | . . . . . . . 8 |
15 | 14 | rneqd 5235 | . . . . . . 7 |
16 | rn0 5259 | . . . . . . 7 | |
17 | 15, 16 | syl6eq 2514 | . . . . . 6 |
18 | 11, 17 | syl5eq 2510 | . . . . 5 |
19 | 18 | ancli 551 | . . . 4 |
20 | df-ne 2654 | . . . . . . 7 | |
21 | rnxp 5442 | . . . . . . 7 | |
22 | 20, 21 | sylbir 213 | . . . . . 6 |
23 | 11, 22 | syl5eq 2510 | . . . . 5 |
24 | 23 | ancli 551 | . . . 4 |
25 | 19, 24 | orim12i 516 | . . 3 |
26 | 1, 25 | ax-mp 5 | . 2 |
27 | eqif 3979 | . 2 | |
28 | 26, 27 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
/\ wa 369 = wceq 1395 =/= wne 2652
cvv 3109
i^i cin 3474 c0 3784 if cif 3941 X. cxp 5002
ran crn 5005 |` cres 5006 " cima 5007 |
This theorem is referenced by: xpima1 5455 xpima2 5456 imadifxp 27458 bj-xpimasn 34512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 |
Copyright terms: Public domain | W3C validator |