![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpmapenlem | Unicode version |
Description: Lemma for xpmapen 7705. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
xpmapen.1 | |
xpmapen.2 | |
xpmapen.3 | |
xpmapenlem.4 | |
xpmapenlem.5 | |
xpmapenlem.6 |
Ref | Expression |
---|---|
xpmapenlem |
S
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6324 | . 2 | |
2 | ovex 6324 | . . 3 | |
3 | ovex 6324 | . . 3 | |
4 | 2, 3 | xpex 6604 | . 2 |
5 | xpmapen.1 | . . . . . . . . 9 | |
6 | xpmapen.2 | . . . . . . . . 9 | |
7 | 5, 6 | xpex 6604 | . . . . . . . 8 |
8 | xpmapen.3 | . . . . . . . 8 | |
9 | 7, 8 | elmap 7467 | . . . . . . 7 |
10 | ffvelrn 6029 | . . . . . . 7 | |
11 | 9, 10 | sylanb 472 | . . . . . 6 |
12 | xp1st 6830 | . . . . . 6 | |
13 | 11, 12 | syl 16 | . . . . 5 |
14 | xpmapenlem.4 | . . . . 5 | |
15 | 13, 14 | fmptd 6055 | . . . 4 |
16 | 5, 8 | elmap 7467 | . . . 4 |
17 | 15, 16 | sylibr 212 | . . 3 |
18 | xp2nd 6831 | . . . . . 6 | |
19 | 11, 18 | syl 16 | . . . . 5 |
20 | xpmapenlem.5 | . . . . 5 | |
21 | 19, 20 | fmptd 6055 | . . . 4 |
22 | 6, 8 | elmap 7467 | . . . 4 |
23 | 21, 22 | sylibr 212 | . . 3 |
24 | opelxpi 5036 | . . 3 | |
25 | 17, 23, 24 | syl2anc 661 | . 2 |
26 | xp1st 6830 | . . . . . . 7 | |
27 | 5, 8 | elmap 7467 | . . . . . . 7 |
28 | 26, 27 | sylib 196 | . . . . . 6 |
29 | 28 | ffvelrnda 6031 | . . . . 5 |
30 | xp2nd 6831 | . . . . . . 7 | |
31 | 6, 8 | elmap 7467 | . . . . . . 7 |
32 | 30, 31 | sylib 196 | . . . . . 6 |
33 | 32 | ffvelrnda 6031 | . . . . 5 |
34 | opelxpi 5036 | . . . . 5 | |
35 | 29, 33, 34 | syl2anc 661 | . . . 4 |
36 | xpmapenlem.6 | . . . 4 | |
37 | 35, 36 | fmptd 6055 | . . 3 |
38 | 7, 8 | elmap 7467 | . . 3 |
39 | 37, 38 | sylibr 212 | . 2 |
40 | 1st2nd2 6837 | . . . . 5 | |
41 | 40 | ad2antlr 726 | . . . 4 |
42 | 28 | feqmptd 5926 | . . . . . . 7 |
43 | 42 | ad2antlr 726 | . . . . . 6 |
44 | simplr 755 | . . . . . . . . . . . 12 | |
45 | 44 | fveq1d 5873 | . . . . . . . . . . 11 |
46 | opex 4716 | . . . . . . . . . . . . 13 | |
47 | 36 | fvmpt2 5963 | . . . . . . . . . . . . 13 |
48 | 46, 47 | mpan2 671 | . . . . . . . . . . . 12 |
49 | 48 | adantl 466 | . . . . . . . . . . 11 |
50 | 45, 49 | eqtrd 2498 | . . . . . . . . . 10 |
51 | 50 | fveq2d 5875 | . . . . . . . . 9 |
52 | fvex 5881 | . . . . . . . . . 10 | |
53 | fvex 5881 | . . . . . . . . . 10 | |
54 | 52, 53 | op1st 6808 | . . . . . . . . 9 |
55 | 51, 54 | syl6eq 2514 | . . . . . . . 8 |
56 | 55 | mpteq2dva 4538 | . . . . . . 7 |
57 | 14, 56 | syl5eq 2510 | . . . . . 6 |
58 | 43, 57 | eqtr4d 2501 | . . . . 5 |
59 | 32 | feqmptd 5926 | . . . . . . 7 |
60 | 59 | ad2antlr 726 | . . . . . 6 |
61 | 50 | fveq2d 5875 | . . . . . . . . 9 |
62 | 52, 53 | op2nd 6809 | . . . . . . . . 9 |
63 | 61, 62 | syl6eq 2514 | . . . . . . . 8 |
64 | 63 | mpteq2dva 4538 | . . . . . . 7 |
65 | 20, 64 | syl5eq 2510 | . . . . . 6 |
66 | 60, 65 | eqtr4d 2501 | . . . . 5 |
67 | 58, 66 | opeq12d 4225 | . . . 4 |
68 | 41, 67 | eqtrd 2498 | . . 3 |
69 | simpll 753 | . . . . . 6 | |
70 | 69, 9 | sylib 196 | . . . . 5 |
71 | 70 | feqmptd 5926 | . . . 4 |
72 | simpr 461 | . . . . . . . . . . . 12 | |
73 | 72 | fveq2d 5875 | . . . . . . . . . . 11 |
74 | 17 | ad2antrr 725 | . . . . . . . . . . . 12 |
75 | 23 | ad2antrr 725 | . . . . . . . . . . . 12 |
76 | op1stg 6812 | . . . . . . . . . . . 12 | |
77 | 74, 75, 76 | syl2anc 661 | . . . . . . . . . . 11 |
78 | 73, 77 | eqtrd 2498 | . . . . . . . . . 10 |
79 | 78 | fveq1d 5873 | . . . . . . . . 9 |
80 | fvex 5881 | . . . . . . . . . 10 | |
81 | 14 | fvmpt2 5963 | . . . . . . . . . 10 |
82 | 80, 81 | mpan2 671 | . . . . . . . . 9 |
83 | 79, 82 | sylan9eq 2518 | . . . . . . . 8 |
84 | 72 | fveq2d 5875 | . . . . . . . . . . 11 |
85 | op2ndg 6813 | . . . . . . . . . . . 12 | |
86 | 74, 75, 85 | syl2anc 661 | . . . . . . . . . . 11 |
87 | 84, 86 | eqtrd 2498 | . . . . . . . . . 10 |
88 | 87 | fveq1d 5873 | . . . . . . . . 9 |
89 | fvex 5881 | . . . . . . . . . 10 | |
90 | 20 | fvmpt2 5963 | . . . . . . . . . 10 |
91 | 89, 90 | mpan2 671 | . . . . . . . . 9 |
92 | 88, 91 | sylan9eq 2518 | . . . . . . . 8 |
93 | 83, 92 | opeq12d 4225 | . . . . . . 7 |
94 | 70 | ffvelrnda 6031 | . . . . . . . 8 |
95 | 1st2nd2 6837 | . . . . . . . 8 | |
96 | 94, 95 | syl 16 | . . . . . . 7 |
97 | 93, 96 | eqtr4d 2501 | . . . . . 6 |
98 | 97 | mpteq2dva 4538 | . . . . 5 |
99 | 36, 98 | syl5eq 2510 | . . . 4 |
100 | 71, 99 | eqtr4d 2501 | . . 3 |
101 | 68, 100 | impbida 832 | . 2 |
102 | 1, 4, 25, 39, 101 | en3i 7574 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
e. wcel 1818 cvv 3109
<. cop 4035 class class class wbr 4452
e. cmpt 4510 X. cxp 5002 --> wf 5589
` cfv 5593 (class class class)co 6296
c1st 6798
c2nd 6799
cmap 7439
cen 7533 |
This theorem is referenced by: xpmapen 7705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-map 7441 df-en 7537 |
Copyright terms: Public domain | W3C validator |