![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > xpsspw | Unicode version |
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.) |
Ref | Expression |
---|---|
xpsspw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxpi 5020 | . . . 4 | |
2 | vex 3112 | . . . . . . . 8 | |
3 | vex 3112 | . . . . . . . 8 | |
4 | 2, 3 | dfop 4216 | . . . . . . 7 |
5 | snssi 4174 | . . . . . . . . . . . . 13 | |
6 | ssun3 3668 | . . . . . . . . . . . . 13 | |
7 | 5, 6 | syl 16 | . . . . . . . . . . . 12 |
8 | 7 | adantr 465 | . . . . . . . . . . 11 |
9 | sseq1 3524 | . . . . . . . . . . 11 | |
10 | 8, 9 | syl5ibrcom 222 | . . . . . . . . . 10 |
11 | df-pr 4032 | . . . . . . . . . . . 12 | |
12 | snssi 4174 | . . . . . . . . . . . . . . 15 | |
13 | ssun4 3669 | . . . . . . . . . . . . . . 15 | |
14 | 12, 13 | syl 16 | . . . . . . . . . . . . . 14 |
15 | 7, 14 | anim12i 566 | . . . . . . . . . . . . 13 |
16 | unss 3677 | . . . . . . . . . . . . 13 | |
17 | 15, 16 | sylib 196 | . . . . . . . . . . . 12 |
18 | 11, 17 | syl5eqss 3547 | . . . . . . . . . . 11 |
19 | sseq1 3524 | . . . . . . . . . . 11 | |
20 | 18, 19 | syl5ibrcom 222 | . . . . . . . . . 10 |
21 | 10, 20 | jaod 380 | . . . . . . . . 9 |
22 | vex 3112 | . . . . . . . . . 10 | |
23 | 22 | elpr 4047 | . . . . . . . . 9 |
24 | selpw 4019 | . . . . . . . . 9 | |
25 | 21, 23, 24 | 3imtr4g 270 | . . . . . . . 8 |
26 | 25 | ssrdv 3509 | . . . . . . 7 |
27 | 4, 26 | syl5eqss 3547 | . . . . . 6 |
28 | sseq1 3524 | . . . . . . 7 | |
29 | 28 | biimpar 485 | . . . . . 6 |
30 | 27, 29 | sylan2 474 | . . . . 5 |
31 | 30 | exlimivv 1723 | . . . 4 |
32 | 1, 31 | syl 16 | . . 3 |
33 | selpw 4019 | . . 3 | |
34 | 32, 33 | sylibr 212 | . 2 |
35 | 34 | ssriv 3507 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
u. cun 3473 C_ wss 3475 ~P cpw 4012
{ csn 4029 { cpr 4031 <. cop 4035
X. cxp 5002 |
This theorem is referenced by: unixpss 5123 xpexg 6602 rankxpu 8315 wunxp 9123 gruxp 9206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 |
Copyright terms: Public domain | W3C validator |