MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zexpcl Unicode version

Theorem zexpcl 12181
Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.)
Assertion
Ref Expression
zexpcl

Proof of Theorem zexpcl
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsscn 10897 . 2
2 zmulcl 10937 . 2
3 1z 10919 . 2
41, 2, 3expcllem 12177 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  e.wcel 1818  (class class class)co 6296   cn0 10820   cz 10889   cexp 12166
This theorem is referenced by:  zsqcl  12238  modexp  12301  climcndslem1  13661  iddvdsexp  14007  dvdsexp  14042  3dvds  14050  prmdvdsexp  14255  rpexp  14261  rpexp12i  14263  phiprmpw  14306  eulerthlem2  14312  fermltl  14314  prmdiv  14315  prmdiveq  14316  odzcllem  14319  odzdvds  14322  odzphi  14323  powm2modprm  14328  pcneg  14397  pcprmpw  14406  prmpwdvds  14422  pockthlem  14423  dyaddisjlem  22004  aalioulem1  22728  aaliou3lem6  22744  muf  23414  dvdsppwf1o  23462  mersenne  23502  lgslem1  23571  lgslem4  23574  lgsval2lem  23581  lgsvalmod  23590  lgsmod  23596  lgsdirprm  23604  lgsne0  23608  lgsqrlem1  23616  lgseisenlem2  23625  lgseisenlem4  23627  m1lgs  23637  oddpwdc  28293  dvdspw  29175  nn0prpwlem  30140  nn0prpw  30141  jm2.18  30930  jm2.22  30937  jm2.23  30938  jm2.20nn  30939  etransclem3  32020  etransclem7  32024  etransclem10  32027  etransclem24  32041  etransclem27  32044  etransclem35  32052  inductionexd  37967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-2nd 6801  df-recs 7061  df-rdg 7095  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-nn 10562  df-n0 10821  df-z 10890  df-uz 11111  df-seq 12108  df-exp 12167
  Copyright terms: Public domain W3C validator